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I.  Sample preparation and characterization 
The synthesis of CdS nanorods (NRs) was carried out following previously reported 
methods.1-3 UV-visible absorption spectra were recorded at room temperature in 2 mm 
quartz cuvettes using an Agilent 8453 spectrophotometer equipped with tungsten and 
deuterium lamps (Fig. S1a). The sizes of the NRs were determined by measuring over 
200 particles in TEM images (Fig. S1b) using ImageJ software,4 giving an average length 
of 21.5 ± 5.2 nm and an average diameter of 4.4 ± 0.6 nm. TEM samples were made by 
drop casting CdS NR solution onto 300 mesh, copper grids with carbon film from 
Electron Microscopy Science. Images were taken using a Phillips CM100 TEM at 80 kV 
with a bottom-mounted 4 megapixel AMT v600 digital camera. 

 
(a) (b) 

  
Fig. S1. (a) UV-visible absorption spectrum of CdS NRs in buffer. (b) TEM image of CdS NRs. 

 
CdS NR surfaces were functionalized, subsequent to NR synthesis, with 3-

mercaptopropanoic acid (3-MPA) using a previously reported ligand exchange 
procedure.2, 3, 5 This enabled aqueous solubility and an electrostatic interaction with CaI. 
The molar absorptivity of the CdS NRs was found by comparison of UV-visible 
absorption spectra (Fig. S1) with Cd2+ concentrations, found by elemental analysis (ICP-
OES), after acid digestion of NR samples. The estimated molar absorptivity at 350 nm 
was 1.1×107 M–1 cm–1 for this sample. The expression and purification of CaI from 
Escherichia coli has been described elsewhere.6 CdS–CaI complexes were prepared 
under Ar by mixing solutions of CdS NRs and CaI in buffer (50 mM Tris-HCl, 5 mM 
NaCl, 5% glycerol, pH 7) with no hole scavenger added. 

 
II.  Transient absorption (TA) spectroscopy 
The complete experimental setup for the TA measurements has been previously 
described.3 In all mixtures used for TA experiments, the concentration of CdS was held 
constant at about 0.7 µM, as determined from UV-visible absorption spectra and the 
molar absorptivity, and the concentration of CaI was varied relative to this in order to 
give different molar ratios CaI:CdS. Samples were sealed under Ar in 2 mm quartz 
cuvettes equipped with air-tight valves. TA samples were rapidly stirred and pumped 
with a beam that was ~240 µm in diameter with pulse energies of ~10 nJ. The pump 
power was low enough that TA decay kinetics were independent of power to prevent 
signal from multiple excitons7 and isolate the kinetics of one electron transferring to CaI. 
TA kinetics for data sets in Fig. 1, 2 and S5 were taken with a time resolution of 0.3 ns. 
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III.  TA spectra of CdS nanorods 

 
Fig. S2. TA spectra of CdS NRs after 400 nm excitation at various time delays. Photoexcitation of CdS 
NRs at 400 nm gives rise to a transient bleach feature peaked at 471 nm in this particular sample, 
corresponding the band gap. Kinetic traces are obtained by monitoring the ∆A amplitude at 471 nm. The 
induced absorption feature at 485 nm is due to carrier cooling and is short lived (<1 ps). 
 
IV.  Fitting of TA kinetics 
The TA decay over the time span of 0.1 ps – 30 µs (Fig. S3) has three time windows with 
distinct decay shapes. 
 

 
Fig. S3. TA kinetics of the band gap feature in CdS NRs probed at 471 nm over a time window of 
0.1 ps–30 µs with a time resolution of 150 fs. The signal is shown as –∆A on log-log axes. The 
inset shows the same data on a split time axis that is linear for the first 10 ps and logarithmic 
thereafter. A fit function that includes a fast single exponential plus a stretched exponential is 
shown in red. The plots reveal the existence of three time windows with distinct functional forms. 

 
The decay can be broken up into short (0.1–10 ps), intermediate (10 ps – 100 ns) and 
long (100 ns – 30 µs) time windows, where each time window has a different functional 
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form. The single exponential plus a stretched exponential fit function used in to fit the TA 
band edge bleach decay of CdS NRs in Fig. S3 is 
 
 𝑓 𝑡 = 𝐴!"#𝑒!!/!!"# + 𝐴!"#$"%&𝑒! !/!!"#$"%& ! . (Eq. S1) 
 
The resulting fit parameters by applying Eq. S1 are 𝐴!"# =   −0.12 , 𝜏!"# = 1.8  ps , 
𝐴!"#$"%& = −0.88 , 𝜏!"#$"%& = 24  ns  and 𝛽 =  0.47. The fast 1.8 ps single exponential 
decay component constitutes 12% of the overall decay and has been attributed to exciton 
localization to a part of the nanorod with the largest diameter, or weakest quantum 
confinement.8 Most of the decay (86%) occurs in the intermediate time window and can 
be described with a stretched exponential with a time constant of 24 ns and a stretching 
exponent of 0.47. There is also a long-lived component that makes up about 2% of the 
∆A amplitude that is not described by the stretched exponential fit. The origin of this 
component is not understood and not addressed here. 

In this communication, we focus on the 1-100 ns time range because most of the TA 
signal change associated with ET occurs within this range.9 The fit to Eq. 2 produces 
similar parameter values to those in Table 1 when we expand the range to 0.01-100 ns.  
 
V.  The kinetic model for excited state relaxation in NRs and CdS–CaI complexes 
For completeness, we present the derivation of the model of the CdS survival probability, 
𝑃!"# 𝑡 .  Though this derivation closely follows previously published works,10 it is a 
foundational part of our description for electronic relaxation in the presence of both traps 
and enzyme with and without rate constant fluctuations (Section VII).  

The TA signal is proportional to the number of electrons in the 1σe excited state at 
time 𝑡 , which is the survival probability of the electron in excited state, 𝑃!"# 𝑡 , 
multiplied by the total number of electrons excited at time zero.  Thus the survival 
probability fully characterizes the time-dependent relaxation embodied in the TA signal, 
∆A(𝑡). The total survival probability, 𝑃!"# 𝑡 , is related to the conditional survival 
probability for a NR that has a given number 𝑁!" of traps, 𝑃!"#(𝑡,𝑁!"), by the law of total 
probability 𝑃!"# 𝑡 = 𝑃 𝑁!" 𝑃!"#(𝑡,𝑁!")!

!!"!! . Because each NR is independent, one 
can view 𝑃!"#(𝑡,𝑁!") as the total number of electrons in the excited state at time 𝑡 
divided by the total number of electrons that were excited at time zero for the 
subpopulation where 𝑁!" is fixed. 𝑃 𝑁!"  is the (time-independent) probability that one 
NR has 𝑁!"  traps and can be computed from equilibrium statistical mechanics. The 
equation of motion for 𝑃!"#(𝑡,𝑁!") is the master equation,11 
 
 𝑑𝑃!"#(𝑡,𝑁!")

𝑑𝑡 =− 𝑘!+𝑘!"𝑁!" 𝑃!"#(𝑡,𝑁!"). (Eq. S2) 

 
The factor of 𝑘!"𝑁!" is the total probability, per unit time, that an electron reacts with 

any of the 𝑁!" traps. The rate constant 𝑘! is the probability per unit time that the electron 
relaxes by any process other than trapping.  This model assumes that the photophysics 
occurs in the “well-mixed” limit, i.e., that the electron samples the spatial extent of the 
NR on a timescale that is fast compared to the trapping time.  This means that the time 
required for an electron to find a trap is not dominated by diffusion in this time window. 
The solution to Eq. S2 is 
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 𝑃!"#(𝑡,𝑁!") = 𝑃!"#(𝑡!,𝑁!")𝑒! !!!!!"!!" (!!!!). (Eq. S3) 
 

The survival probability decays in the short time window (0.1 ps – 10 ps) in a way 
that is independent of 𝑁!"8 so that the initial condition becomes 𝑃!"#(𝑡!,𝑁!") = 𝑃!"# 𝑡! , 
the amplitude at time 𝑡! after the relaxation of CdS between time 0 and 𝑡!.  

We describe the distribution of electron trap sites, 𝑃 𝑁!" , as an ensemble of NRs 
coupled to an ideal solution of traps that are noninteracting with one another but are at 
fixed chemical potential, temperature and volume so that the number of traps at 
equilibrium,  𝑁!", in a NR follows a Poisson distribution: 
 
 

𝑃 𝑁!" =
𝑁!" !!"𝑒! !!"

𝑁!"!
. (Eq. S4) 

 
where 𝑁!"  is the average number of traps at thermal equilibrium. The decay of the 
ensemble of complexes, 𝑃!"# 𝑡 , computed from probability theory is then equivalent to 
a thermal ensemble average, 

 
𝑃!"# 𝑡 = 𝑃 𝑁!" 𝑃!"# 𝑡,𝑁!" ,

!

!!"!!

 (Eq. S5) 

 
 

= 𝑃!"# 𝑡! 𝑒!!!! 𝑃(𝑁!")𝑒!!!"!!"!
!

!!"!!

, (Eq. S6) 

 
 = 𝑃!"# 𝑡! exp −𝑘!(𝑡− 𝑡!)+ 𝑁!" 𝑒!!!"(!!!!) −1 . (Eq. S7) 

 
Because 𝑘!𝑡! ≪ 1 and 𝑘!"𝑡! ≪ 1, we simplify the fit equation by omitting 𝑡! and writing 
𝑃!"# 𝑡!  as the amplitude, 𝑎!"#: 
 
 𝑃!"# 𝑡 = 𝑎!"# exp −𝑘!𝑡+ 𝑁!" 𝑒!!!"! −1 .   (Eq. S8) 

 
This is the model (Eq. 2) we use to describe the TA decay kinetics in Fig. 1. 

We arrive at Eq. 3 in the manuscript starting with a model for the conditional 
survival probabilities for photoexcited electrons in CdS NRs with both traps and adsorbed 
CaI moieties, 𝑃!"#!!"#(𝑡,𝑁!",𝑁!"#). The master equation for 𝑃!"#!!"#(𝑡,𝑁!",𝑁!"#) is 
 
𝑑𝑃!"#!!"#(𝑡,𝑁!",𝑁!"#)

𝑑𝑡 =− 𝑘!+𝑘!"𝑁!"+𝑘!"𝑁!"# 𝑃!"#!!"#(𝑡,𝑁!",𝑁!"#). (Eq. S9) 

 
Just like the model discussed above, the term 𝑘!"𝑁!"# is the probability per unit time to 
decay to any of the 𝑁!"# enzymes on the NR. The solution to Eq. S9 is  
 
𝑃!"#!!"#(𝑡,𝑁!",𝑁!"#) = 𝑃!"#!!"#(𝑡!,𝑁!",𝑁!"#)𝑒! !!!!!"!!"!!!"!!"# (!!!!). (Eq. S10) 
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Again, factorizing the initial conditions, 𝑃!"#!!"# 𝑡!,𝑁!",𝑁!"# = 𝑃!"#!!"# 𝑡! . 
Assuming that the coverage of both enzymes and traps is low and that they do not 
interact, i.e., each is at a fixed chemical potential, the joint probability factorizes, 
𝑃 𝑁!",𝑁!"# = 𝑃 𝑁!" 𝑃(𝑁!"#). Using the same model for each species as above, 
 
 

𝑃(𝑁!") =
𝑁!" !!"𝑒! !!"

𝑁!"!
 (Eq. S11) 

   
 

𝑃(𝑁!"#) =
𝑁!"# !!"#𝑒! !!"#

𝑁!"#!
. (Eq. S12) 

 
Where 𝑁!"#  and 𝑁!"  are the average numbers of enzyme attached to the CdS NR and 
traps in the NR, respectively, at thermal equilibrium.  𝑃!"#!!"# 𝑡  is therefore  

 
𝑃!"#!!"# 𝑡 = 𝑃(𝑁!"#)𝑃(𝑁!")𝑃!"#!!"#(𝑡,𝑁!",𝑁!"#)

!

!!"!!

!

!!"#!!

 (Eq. S13) 

 
 

= 𝑃!"#!!"# 𝑡! 𝑒!!!! 𝑃(𝑁!")𝑒!!!"!!"!
!

!!"!!

𝑃(𝑁!"#)𝑒!!!"!!"#!
!

!!"#!!

 (Eq. S14) 

 
 = 𝑃!"#!!"# 𝑡! 𝑒!!! !!!! exp 𝑁!" 𝑒!!!"(!!!!) −1 exp 𝑁!"# 𝑒!!!"(!!!!) −1  

 (Eq. S15) 

 
 = 𝑃!"#!!"# 𝑡! exp −𝑘!(𝑡− 𝑡!)+ 𝑁!" 𝑒!!!"(!!!!) −1 + 𝑁!"# 𝑒!!!"(!!!!) −1  (Eq. S16) 

 
Again, as we did in going from Eq. S7 to Eq. S8, we replace 𝑃 𝑡!  in favor of the 
amplitude, 𝑎!"#!!"#:  
 
𝑃!"#!!"# 𝑡 =  

𝑎!"#!!"# exp −𝑘!𝑡+ 𝑁!" 𝑒!!!"! −1 + 𝑁!"# 𝑒!!!"! −1    (Eq. S17) 

 
VI.  Fluctuations in both numbers and intrinsic rate constants for traps and CaI 
Here we derive an equation for the survival probability in the presence of fluctuations for 
the intrinsic rate constants.  Fluctuations in the intrinsic rate constants can occur when 
there are additional sources of disorder in the system beyond the number fluctuations 
modeled above.  For example, distributions in distances between the enzyme and the NR 
or conformational fluctuations of the enzyme might influence electron transfer rates. In 
this section we derive the expression for the survival probability for electron trapping 
when there are fluctuations in the trapping rates. Suppose there are 𝑁!" traps in a NR and 
that the rate constant for each trap is a random variable chosen from some distribution, 
𝑘! = 𝑘!" + 𝛿!, where 𝑘!" is the mean of the distribution and 𝛿! is the fluctuation away 
from the mean for a given trap, 𝑖. The distribution function for each 𝛿!, 𝑝 𝛿! , in the set 
𝛿 = (𝛿!,… , 𝛿!!") is identical and has finite first and second moments. 

The master equation for the survival probability 𝑃!"#(𝑡,𝑁!", 𝛿 ) is 



S7	  

 𝑑𝑃!"#(𝑡,𝑁!", 𝛿 )
𝑑𝑡 =− 𝑘!+𝑘!"𝑁!"+ 𝛿!

!!"

!!!

𝑃!"#(𝑡,𝑁!", 𝛿 ), (Eq. S18) 

 
which is the survival probability for a given 𝑁!" and a given realization of the random 
variable 𝛿 .    Solving the differential equation, and again omitting 𝑡!  and replacing 
𝑃!"#(𝑡!,𝑁!", 𝛿 ) in favor of the amplitude 𝑃!"#(𝑡!) gives 
 
 𝑃!"#(𝑡,𝑁!", 𝛿 ) = 𝑃!"#(𝑡!)  𝑒

! !!!!!"!!"! !!
!!"
!!! ! (Eq. S19) 

 
Because the initial condition is independent of 𝑁!", it must also be independent of the 
values for the intrinsic rate constants. Thus, for a given 𝑁!" we can average over the 
fluctuations in the intrinsic rates first, and then average over the number fluctuations, 
 

𝑒! !!
!!"
!!! ! = 𝑑𝛿!𝑝 𝛿! 𝑒! !!

!!"
!!! !

!!"

!!!

,
!

!!!"

 (Eq. S20) 

 
 

𝑒! !!
!!"
!!! ! = 𝑑𝛿!𝑝 𝛿! 𝑒!!!!,

!!"

!!!

!

!!!"

 (Eq. S21) 

 
 

𝑒! !!
!!"
!!! ! = 𝑑𝛿𝑝 𝛿 𝑒!!"

!

!!!"

!!"

, (Eq. S22) 

 
 𝑒! !!

!!"
!!! ! = 𝑝(𝑡)!!". (Eq. S23) 

 
The simplification from Eq. S21 to Eq. S22 comes from the fact that all 𝛿!  are 
independent, identically distributed random variables chosen from the same distribution. 
𝑝(𝑡) in Eq. S23 is the moment generating function for the distribution of trapping rate 
fluctuations, 𝑝 𝑡 = 𝑑𝛿𝑝 𝛿 𝑒!!"!

!!!"
. Finally, averaging over the Poisson distribution in 

𝑁!" gives the survival probability in the presence of both sources of fluctuations, 
 
 

𝑃!"# 𝑡 = 𝑃(𝑁!")𝑃!"#(𝑡,𝑁!", 𝛿)
!

!!"!!

, (Eq. S24) 

 
= 𝑃!"#(𝑡!)    𝑃(𝑁!")𝑒!!!!

!

!!"!!

𝑒!!!"!!"! 𝑒! !!
!!"
!!! ! , 

 

(Eq. S25) 

 
= 𝑃!"#(𝑡!)  𝑒!!!!𝑒! !!"

𝑁!" 𝑒!!!"!𝑝(𝑡) !!"

𝑁!"!

!

!!"!!

, (Eq. S26) 
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which upon replacing 𝑃!"#(𝑡!)  with 𝑎!"# yields the final result 
 

 𝑃!"# 𝑡 = 𝑎!"# exp −𝑘!𝑡 + 𝑁!" 𝑒!!!"!𝑝(𝑡)− 1 . (Eq. S27) 
 

To gauge the importance of intrinsic rate fluctuations, we approximate 𝑝(𝑡) at the 
level of the second cumulant, 

 𝑝 𝑡 ≈ 𝑒
!!
! !! . (Eq. S28) 

 
Including 𝛿!  in the model functions leads to a negligible decrease in the reduced 

chi-square value (2% decrease) without appreciably changing the other fit parameters. 
Therefore, 𝛿!  is a statistically insignificant parameter and the TA data are insensitive to 
fluctuations in the intrinsic rates. 

A similar derivation for CdS–CaI complexes gives 

𝑃!"#!!"# 𝑡 = 
𝑎!"#!!"# exp −𝑘!𝑡 + 𝑁!" 𝑒!!!"!𝑝!" 𝑡 − 1 + 𝑁!"# 𝑒!!!"!𝑝!"(𝑡) − 1 , (Eq. S29) 

where 𝑝!" 𝑡  and 𝑝!"(𝑡) are the moment generating functions for the distributions in 
trapping and ET rate fluctuations, 𝑝(𝛿!") and 𝑝(𝛿!"), respectively.  

Using the second cumulant approximation 𝑝!"(𝑡) ≈ 𝑒 !!"
! !!/!, including fluctuations 

in the rates for ET does not statistically improve the fit (reduced chi-squared decreases by 
0.05%), indicating that a model with one representative value of 𝑘!" is sufficient to 
describe the TA data reported here. 

VII. Error analysis for 𝒌𝟎, 𝑵𝐭𝐫 ,  𝒌𝐭𝐫, 𝑵𝐂𝐚𝐈  and 𝒌𝐄𝐓 
To determine the fit parameters 𝑘!, 𝑁!" ,  𝑘!", 𝑁!"#  and 𝑘!" and their uncertainties, we 
employed the bootstrapping Monte Carlo method.12 Distributions for model parameters 
and their correlations come from generating 10,000 synthetic datasets by resampling the 
original data with replacement and performing nonlinear least squares fits for each set.  
The fit parameters that minimize the chi-square value from this process are distributed 
around the parameters of best fit (Table 1). Joint parameter distributions for particular 
pairs appear in Fig. S4. 

Bootstrapping data indicate strong correlations between fit parameters as one might 
expect from such a nonlinear, multi-parameter data model. These correlations imply that 
standard error estimates of each parameter taken individually are insufficient to represent 
the uncertainties for all parameters simultaneously. The uncertainties reported for the fit 
parameters in Table 1 include covariances between parameters and represent the 95% 
confidence in the multidimensional parameter space.12 
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Joint probability distributions for fitting parameters 

 

 
Fig. S4. Joint probability distributions for parameter pairs generated by bootstrapping Monte Carlo 
resampling. Parameter distributions are shown pairwise for (a) 𝑁!"  and 𝑘!; (b) 𝑁!"  and 𝑘!"; (c) 𝑘!" and 
𝑘!, and; (d) 𝑁!"#  and 𝑘!". Distributions (a), (b) and (c) were produced from the 0.00:1 data set from Table 
S1 and (d) was produced from the 1.70:1 data set. Pearson’s correlation coefficient for each pair of 
parameters, ρ, appears in each panel of the figure. 
 
VIII.  Kinetic modeling of another CdS-CaI dataset 
To assess the reproducibility of fit parameters found in this communication, we apply our 
analysis to previously published data on the decay kinetics of CdS–CaI complexes.13 The 
CdS NRs used for that data set come from the same synthesis batch as the ones used in 
the manuscript. The fitting parameters obtained by fitting the data in Fig. S5 to Eqs. 2 and 
3 are summarized in Table S1.  

 
Fig. S5. Band gap TA kinetics of CdS–CaI complexes (dots) for various ratios CaI:CdS and fits to Eq. 3 of 
the manuscript (solid lines). Ratios listed are the molar ratios upon mixing during sample preparation. 
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Table S1. Electron decay parameters for another data set of CdS NRs and CdS–CaI complexes 

CaI:CdS  
molar ratio 𝑘! (107 s–1)a 𝑁!"

a 𝑘!" (108 s–1)a 𝑁!"#
b 𝑘!" (107 s–1)b 

0.00:1 1.54 ± 0.08 0.57 ± 0.03 1.1 ± 0.2 – – 
0.15:1 

   

0.17 ± 0.02 

2.2 ± 0.3 
0.29:1 0.30 ± 0.02 
0.56:1 0.44 ± 0.03 
1.25:1 0.70 ± 0.04 
1.70:1 0.99 ± 0.05 

a Values found by fitting CdS NR kinetic trace (Fig. S5) according to Eq. 2.  
b Result of global fit of data in Fig. S5 to Eq. 3 by holding 𝑘!, 𝑘!", and 𝑁!"  fixed, defining 𝑘!" as a 
global variable between data sets containing CaI, and allowing 𝑁!"#  to vary. Uncertainties 
associated with each fit parameter are 95% confidence intervals. 
 
The values of 𝑘!, 𝑘!", and 𝑁!"  in Table S1 are consistent with those in Table 1 within 
the 95% confidence integral, indicating that the behavior described here is reproducible 
for CdS NRs made in the same synthesis. The value of 𝑘!" obtained from this data set 
also agrees with that of the data set in the manuscript, within the confidence interval. 
 
IX. 𝐐𝐄𝐄𝐓 as a function of the intrinsic rate constants 
While the QE!"  for an individual CdS–CaI complex can be calculated by QE!" =
𝑘!"𝑁!"#/ 𝑘! + 𝑘!"𝑁!" + 𝑘!"𝑁!"# , calculation of QE!"  for an ensemble requires the 
inclusion of the distribution in the number traps and adsorbed CaI. This can be done 
using signal intensities according to14  
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∞
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!

, (Eq. S30) 

 
where 𝑃!"# 𝑡  and 𝑃!"#–!"#(𝑡) are the fits of TA kinetics of CdS NRs to Eq. 2 and CdS–
CaI complexes to Eq. 3, respectively.15 Changing integration variables in the expression 
for the quantum yield from 𝑡 to 𝑘!𝑡 as in the second part of Eq. S30 shows that the 
quantum yield of electron transfer depends only on the ratio of rate constants, so that 
there are two degrees of freedom and not three for fixed values of 𝑁!"  and 𝑁!"# . That 
is, QE!" 𝑘!, 𝑘!" , 𝑘!" =   QE!"(𝑘!"/𝑘!, 𝑘!"/𝑘!). Fig. S6a shows QE!"(𝑘!"/𝑘!, 𝑘!"/𝑘!), 
evaluated by numerical integration of Eq. S30 for 𝑁!" = 0.59 and 𝑁!"# = 1. QE!" 
shows a very weak dependence on 𝑘!"/𝑘! because 𝑁!"  is already very small, so the 
most important parameter in determining the quantum efficiency for electron transfer is 
𝑘!"/𝑘!.   

Because the most important quantity in determining QE!" is 𝑘!"/𝑘!, increasing 𝑘!", 
decreasing 𝑘!, or changing both to increase the ratio increases the quantum efficiency for 
electron transfer. Fig. S6b shows the predicted values of QE!" as a function of 𝑘!"/𝑘!, 
for fixed values of 𝑁!"  and 𝑘!" when 𝑁!"# = 1. The circles in Fig. S6a and S6b mark 
the QE!" = 41% calculated when the values for all parameters take on those that are 
measured in this communication (Table 1). QE!" saturates to ≈ 63% when 𝑘!"/𝑘! ≈
100. This is because at 𝑁!"# = 1, 37% of CdS NRs in the sample have no CaI adsorbed 
and therefore do not undergo ET. 
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Fig. S6. Quantum efficiency of electron transfer, QE!", for 𝑁!"# = 1. (a) Contour plot of QE!" as a 
function of 𝑘!"/𝑘! and 𝑘!"/𝑘!. Contour lines of constant QE!", where the labels denote the values of the 
contours, run roughly parallel to the y-axis indicating that the quantum yield for electron transfer depends 
very weakly on 𝑘!"/𝑘! when 𝑁!" = 0.59.  The gray dashed line in (a) marks the slice of the data plotted 
in (b). The circle indicates the point in parameter space where the CdS–CaI system currently lies. QE!" = 
41% when 𝑘!, 𝑁!" , 𝑘!" and 𝑘!" take on the values presented in Table 1 (𝑘!"/𝑘! = 7.3 and 𝑘!"/𝑘! = 1.6). 
(b) QE!" as a function of 𝑘!"/𝑘! where 𝑘!, 𝑁!"  and 𝑘!" values given in Table 1. This trace corresponds to 
the gray dashed line in (a). The circle shows the point where QE!" = 41% (𝑘!"/𝑘! = 1.6), which is the 
QE!" we find from the fits to the TA data (Table 1). 
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