### Supplementary material:

### From macro to micro - a comparative study

Systematic comparison between different types of peptide arrays (macro vs. microarrays) was not described so far in the literature, probably because such experiments are very expensive and time-consuming to conduct only for a comparative purpose. Here we demonstrate such an experiment. Two sets of peptides arrays were ordered (supplementary Figure 1): (i) A macro-array produced by the JPT Company [1]. The peptides were synthesized using the standard SPOT synthesis technique on cellulose sheets (PepSpot<sup>TM</sup>). (ii) A micro-array produced by the INTAVIS Company [2]. The peptides were synthesized using the SC2 technique on glass slides (CelluSpots). The peptide sequences were identical in both arrays, which contained 174 peptides derived from the sequence of the CFTR protein (cystic fibrosis transmembrane conductance regulator) for a full list of all peptides see supplementary Table 2.

The CFTR protein is known to interact with the Hsp90 protein (heat shock protein 90) [3] and the peptide array experiments were carried out to identify the precise Hsp90 - binding sites in CFTR. All the binding assays were carried out by incubating recombinant Hsp90 protein with both peptide arrays. Both binding assays were similar in terms of the buffers, proteins and image analysis that were used. Hsp90 is a molecular chaperone and it is thus expected to bind a wide range of peptides with different binding affinities. Indeed, our studies showed that in both arrays Hsp90 bound different peptides and gave diverse signal intensities. Surprisingly, the two arrays showed somewhat different results, and only 12 observed peptides were identical in both arrays (supplementary Table 1).

The difference between the two arrays can be attributed to the nature of the array and the way the experiments are carried out: (i) the concentrations of peptide per spot were different. Synthesis of a macro-array is expected to yield peptide amounts at the pmol range, whereas for a micro-array such yield is expected to be at the nmol range [4]. High peptide density can be advantageous in case of relatively low binding affinities. Though, in some cases of chaperones (e.g. the chaperone DnaK), lower peptides concentrations were preferable since the protein did not enter the spots of the high density arrays [5]. (ii) Since each array was synthesized by a different technique, the quality and purity of the synthesized peptides in each spot might be different. Hence the results could be influenced by unsuccessful synthesis or by-products. (iii) Differences in binding can also arise from technical differences in the binding assay. For example, the binding assay using the macro-arrays includes a key step of electrotransfer to PVDF membranes (performed in order to enable reusing of the array and fixation of the protein on the PVDF membrane). In micro-arrays the binding detection is performed directly on the glass slide (slides are disposable). Washing steps that are performed directly on the slide can affect the binding and eliminate relatively weak interactions. (iv) The different solid phase supports may influence the accessibility of the protein, and unspecific interaction of the protein with the membrane may also play a role.

To compare the properties of the Hsp90-binding peptides from both arrays, we analysed their various properties, such as charge and hydrophobicity. We measured their net charges at pH = 7.0 and their hydrophilicity. All calculations were done by Innovagen's Peptide Property Calculator [6]. As a control, we examined both parameters also for the nonbinding peptides from both arrays. Furthermore, we compared the distribution of charge and hydrophilicity within the groups of peptides bearing similar binding intensities in order to see if there is any correlation between these parameters and the binding intensity. The results (Supplementary Table 1, Supplementary Figure 1) show that in both arrays the Hsp90-binding peptides have a positive charge at pH = 7.0, while the non-binding peptides have a negative charge. In the micro-array the binding intensity correlated with the positive charge. In the macro-array there were no significant differences between the different intensity groups in this regard. As for the hydrophilicity, in the micro-array the average hydrophilicity of all binding peptides is lower then the average of all non binding peptides, indicating an overall hydrophobic character for the binding peptides. The macro-array results showed the opposite trend: the binding peptides were on average more hydrophilic than the non-binding peptides, and there was no correlation between the hydrophilicity and the binding intensity.

The described results are only array screening results and were not validated in solution. We conclude that the properties of the patterns may look different, depending on conditions and type of array. The conclusions of our experiments do not favor one commercial company over the other. Rather, these results emphasize the differences between micro-arrays and macro-arrays, regardless of which manufacturer makes them.

## References

- 1. GmbH, J.P.T., <u>http://www.jpt.com/index.htm</u>.
- 2. INTAVIS, B.I., <u>http://www.intavis.com/en/</u>.
- 3. Loo, M.A., et al., *Perturbation of Hsp90 interaction with nascent CFTR prevents its maturation and accelerates its degradation by the proteasome.* Embo J, 1998. **17**(23): p. 6879-87.
- 4. Blackwell, H.E., *Hitting the SPOT: small-molecule macroarrays advance combinatorial synthesis.* Curr Opin Chem Biol, 2006. **10**(3): p. 203-12.
- 5. Rudiger, S., et al., *Substrate specificity of the DnaK chaperone determined by screening cellulose-bound peptide libraries.* Embo J, 1997. **16**(7): p. 1501-7.
- 6. Calculator, I.s.P.P., <u>http://innovagen.com/custom-peptide-synthesis/peptide-property-calculator</u>.

# Supplementary Table 1: Binding between the HSP90 protein and peptides derived from the CFTR protein sequence: comparison of macro-array vs. micro array

| Binding intensity | # binding pep.<br>in Macro-array | # binding pep.<br>in Micro-array | # Identical binding pep<br>in both Macro/Micro- arrays |
|-------------------|----------------------------------|----------------------------------|--------------------------------------------------------|
| Very strong       | 5                                | 7                                | 3                                                      |
| Strong            | 10                               | 7                                | 2                                                      |
| Medium            | 16                               | 10                               | 4                                                      |
| Weak              | 14                               | 12                               | 3                                                      |
| Total             | 45                               | 36                               | 12                                                     |

# Supplementary Table 2: The peptides in the array derived from the CFTR protein.

| #General | Sequence        | Residues |
|----------|-----------------|----------|
| 1        | MQRSPLEKASVVSKL | 1-15     |
| 2        | ASVVSKLFFSWTRPI | 9-23     |
| 3        | FSWTRPILRKGYRQR | 17-31    |
| 4        | RKGYRQRLELSDIYQ | 25-39    |
| 5        | SDIYQIPSVDSADNL | 35-49    |
| 6        | QIPSVDSADNLSEKL | 39-53    |
| 7        | DNLSEKLEREWDREL | 47-61    |
| 8        | REWDRELASKKNPKL | 55-69    |
| 9        | SKKNPKLINALRRCF | 63-77    |
| 10       |                 | /1-80    |
| 11       | RIIASYDPDNKEERS | 104-118  |
| 12       |                 | 113-123  |
| 13       |                 | 139-153  |
| 14       |                 | 147-101  |
| 10       |                 | 100-109  |
| 17       |                 | 103-177  |
| 18       |                 | 180-103  |
| 10       | LIWELLOAS       | 214-222  |
| 20       | RMMMKYRDORAGKIS | 242-256  |
| 21       | MKYRDORAGKISERI | 245-259  |
| 22       | RAGKISERLVITS   | 251-263  |
| 23       | GKISERLVITSEMIE | 253-267  |
| 24       | SEMIENIQSVKAYCW | 263-277  |
| 25       | VKAYCWEEAMEKMIE | 272-286  |
| 26       | AMEKMIENLRQTELK | 280-294  |
| 27       | LRQTELKLTRKAAYV | 288-302  |
| 28       | LKLTRKAAYVRYFNS | 293-307  |
| 29       | AAYVRYFNSSAFFFS | 299-313  |
| 30       | TRQFPWAVQTWYDSL | 351-365  |
|          |                 |          |

| 31        | QTWYDSLGAINKIQD    | 359-373   |
|-----------|--------------------|-----------|
| 32        | AINKIQDFLQKQEYK    | 367-381   |
| 33        | LQKQEYKTLEYNLTT    | 375-389   |
| 34        | LEYNLTTEVVMENV     | 383-397   |
| 35        | TTTEVVMENVTAFWE    | 388-402   |
| 36        | NVTAFWEFGEGELEE    | 396-410   |
| 37        | FWEEGEGELEEKAKO    | 400-414   |
| 38        | I FEKAKONNNRKTS    | 408-422   |
| 39        |                    | 416-430   |
| 40        | FESNESI I GTPVI KD | 429-443   |
| -0<br>/1  |                    | 423-443   |
| 40<br>1   |                    | 458 472   |
| 42        |                    | 430-472   |
| 43        |                    | 474-400   |
| 44        |                    | 400-301   |
| 40        | FSWIMPGTIKENIIF    | 494-508   |
| 40        | TIKENIIFGVSYDE     | 501-514   |
| 47        | TIKENIIGVSYDE      | 501-514   |
| 48        | FGVSYDEYRYRSVIK    | 508-522   |
| 49        | YDEYRYRSVIKACQL    | 512-526   |
| 50        | VIKACQLEEDISKFA    | 520-534   |
| 51        | QLEEDISKFAEKDNI    | 525-539   |
| 52        | AEKDNIVLGEGGITL    | 534-548   |
| 53        | LGEGGITLSGGQRAR    | 541-555   |
| 54        | SGGQRARISLARAVY    | 549-563   |
| 55        | SLARAVYKDADLYLL    | 557-571   |
| 56        | DADLYLLDSPFGYLD    | 565-579   |
| 57        | SPFGYLDVLTEKEIF    | 573-587   |
| 58        | LDVLTEKEIFESCVC    | 578-592   |
| 59        | IFESCVCKLMANKTR    | 586-600   |
| 60        | LMANKTRILVTSKME    | 594-608   |
| 61        | KTRILVTSKMEHLKK    | 598-612   |
| 62        | KMEHLKKADKILILH    | 606-620   |
| 63        | DKILILHEGSSYFYG    | 614-628   |
| 64        | GSSYFYGTFSELQNL    | 622-636   |
| 65        | TFSELQNLQPDFSSK    | 629-643   |
| 66        | PDFSSKLMGCDSFDQ    | 638-652   |
| 67        | GCDSEDQESAERRNS    | 646-660   |
| 68        | SAFRRNSII TETI HR  | 654-668   |
| 69        | I TETI HRESI EGDAP | 662-676   |
| 70        | SIEGDAPVSWTETKK    | 670-684   |
| 71        | SWTETKKOSEKOTGE    | 678-692   |
| 72        | SEKOTGEEGEKRKNS    | 686-700   |
| 73        |                    | 694-708   |
| 74        |                    | 702-716   |
| 75        |                    | 710_724   |
| 75        |                    | 710-724   |
| 70        |                    | 1 10-1 JZ |
| //<br>70  |                    | 120-140   |
| / O<br>70 |                    | 134-148   |
| 19        |                    | /42-/50   |
| δU        | TRISVISI GTI LQAR  | /50-/64   |

| 81  | GPTLQARRRQSVLNL     | 758-772   |
|-----|---------------------|-----------|
| 82  | RQSVLNLMTHSVNQG     | 766-780   |
| 83  | THSVNQGQNIHRKTT     | 774-788   |
| 84  | QNIHRKTTASTRKVSL    | 782-796   |
| 85  | STRKVSLAPQANLTE     | 790-804   |
| 86  | PQANLTELDIYSRRL     | 798-812   |
| 87  | DIYSRRLSQETGLEI     | 806-820   |
| 88  | QETGLEISEEINEED     | 814-828   |
| 89  | EEINEEDLKECFFDD     | 822-836   |
| 90  | KECFFDDMESIPAVT     | 830-844   |
| 91  | ESIPAVTTWNTYLRY     | 838-852   |
| 92  | WNTYLRYITVHKSLI     | 846-860   |
| 93  | TVHKSLIFVLIWCLV     | 854-868   |
| 94  | I WI I GNTPI ODKGNS | 881-895   |
| 95  | LODKGNSTHSRNNSY     | 889-903   |
| 96  | HSRNNSYAVIITSTS     | 897-911   |
| 97  | RGI PI VHTI ITVSKI  | 933-947   |
| 98  |                     | 941-955   |
| 90  | HHKMI HSVI OAPMST   | 949-963   |
| 100 |                     | 057_071   |
| 100 |                     | 965-979   |
| 107 |                     | 903-979   |
| 102 |                     | 975-907   |
| 103 |                     | 1035 1040 |
| 104 |                     | 1033-1049 |
| 105 |                     | 1043-1037 |
| 100 |                     | 1051-1005 |
| 107 |                     | 1059-1075 |
| 100 |                     | 1007-1001 |
| 109 |                     | 1073-1009 |
| 110 |                     | 1003-1097 |
| 111 |                     | 1091-1102 |
| 112 |                     | 1122-1130 |
| 113 |                     | 1150-1164 |
| 114 | RSVSRVFKFIDMPTE     | 1158-1172 |
| 115 |                     | 1166-1180 |
| 116 | KPIKSIKPYKNGQLS     | 1174-1188 |
| 117 | YKNGQLSKVMIIENS     | 1182-1196 |
| 118 | VMIIENSHVKKDDIW     | 1190-1204 |
| 119 | VKKDDIWPSGGQMTV     | 1198-1212 |
| 120 | SGGQMTVKDLTAKYT     | 1206-1220 |
| 121 | DLTAKYTEGGNAILE     | 1214-1228 |
| 122 | GGNAILENISFSISP     | 1222-1236 |
| 123 | ISFSISPGQRVGLLG     | 1230-1244 |
| 124 | QRVGLLGRTGSGKST     | 1238-1252 |
| 125 | TGSGKSTLLSAFLRL     | 1246-1260 |
| 126 | LSAFLRLLNTEGEIQ     | 1254-1268 |
| 127 | NTEGEIQIDGVSWDS     | 1262-1276 |
| 128 | DGVSWDSITLQQWRK     | 1270-1284 |
| 129 | TLQQWRKAFGVIPQK     | 1278-1292 |
| 130 | FGVIPQKVFIFSGTF     | 1286-1300 |

| 131 | FIFSGTFRKNLDPYE                | 1294-1308 |
|-----|--------------------------------|-----------|
| 132 | KNLDPYEQWSDQEIW                | 1302-1316 |
| 133 | WSDQEIWKVADEVGL                | 1310-1324 |
| 134 | VADEVGLRSVIEQFP                | 1318-1332 |
| 135 | SVIEQFPGKLDFVLV                | 1326-1340 |
| 136 | CVLSHGHKQLMCLAR                | 1334-1348 |
| 137 | GGCVLSHGHKQLMCL                | 1342-1356 |
| 138 | HKQLMCLARSVLSKA                | 1350-1364 |
| 139 | RSVLSKAKILLLDEP                | 1358-1372 |
| 140 | ILLLDEPSAHLDPVT                | 1366-1380 |
| 141 | AHLDPVTYQIIRRTL                | 1374-1388 |
| 142 | QIIRRTLKQAFADCT                | 1382-1396 |
| 143 | QAFADCTVILCEHRI                | 1390-1404 |
| 144 | ILCEHRIEAMLECQQ                | 1398-1412 |
| 145 | AMLECQQFLVIEENK                | 1406-1420 |
| 146 | LVIEENKVRQYDSIQ                | 1414-1428 |
| 147 | RQYDSIQKLLNERSL                | 1422-1436 |
| 148 | LLNERSLFRQAISPS                | 1430-1444 |
| 149 | RQAISPSDRVKLFPH                | 1438-1452 |
| 150 | RVKLFPHRNSSKCKS                | 1446-1460 |
| 151 | NSSKCKSKPQIAALK                | 1454-1468 |
| 152 | PQIAALKEETEEEVQ                | 1462-1476 |
| 153 | ALKEETEEEVQDTRL                | 1466-1480 |
| 154 | TTEVVMENVTAFWEEGFGELFEKAK      | 389-413   |
| 155 | EEGFGELFEKAKQNNNNRKTSNGDDSLF   | 402-429   |
| 156 | KTSNGDDSLFFSNFSLL              | 420-436   |
| 157 | VLKDINFKIERGQLLAVAGS           | 440-459   |
| 158 | GQLLAVAGSTGAGKTSLLMMIMG        | 451-473   |
| 159 | GKTSLLMMIMGELEPSEGKIKH         | 463-484   |
| 160 | GKIKHSGRISFCSQFSWIMPG          | 480-500   |
| 161 | IMPGTIKENIIFGVSYDEYRYRSVIK     | 497-522   |
| 162 | EYRYRSVIKACQLEEDISKFAEKDN      | 514-538   |
| 163 | VLGEGGITLSGGQRARISLARAVYK      | 540-564   |
| 164 | SGGQRARISLARAVYKDADLYLLDS      | 549-573   |
| 165 | DLYLLDSPFGYLDVLTEKEIFESCV      | 567-591   |
| 166 | VLTEKEIFESCVCKLMANKTRILVT      | 580-604   |
| 167 | NKTRILVTSKMEHLKKADKILILHE      | 597-621   |
| 168 | DKILILHEGSSYFYGTFSELQNLQP      | 614-638   |
| 169 | TFSELQNLQPDFSSKLMG             | 629-646   |
| 170 | QIPSVDSADNLSEKLEREWDRELASKKNPK | 39-68     |
| 171 | MQMRIAMFSLIYKKTLKLSSRVLDK      | 150-174   |
| 172 | IGQLVSLLSNNLNKFDEG             | 177-194   |
| 173 | EMIENIQSVKAYCWEEAMEKMIE        | 264-286   |
| 174 | ISFCSQFSWIMPGTIKENIIFGVSYDE    | 488-514   |

\*An array of peptides derived from the CFTR protein was screened for binding Hsp90 by immunoblot experiments with Hsp90 antibody.

### **Supplementary Figure 1:**

Α.

|      | - | 3  | -  | 28 |    | 100 |    | 1   |      | 167 |    | 15 |   | 100 | 10 | 255 |   | 16 |
|------|---|----|----|----|----|-----|----|-----|------|-----|----|----|---|-----|----|-----|---|----|
| 1    | 6 |    | 5  |    |    | *   |    |     |      |     |    |    |   |     |    | ø   |   |    |
| 100  | P |    | -  |    |    |     |    | 1   |      |     |    | 1  | 6 |     | 83 | in. | 5 | 24 |
|      | 8 |    |    |    | 10 | 0   |    |     |      |     | 10 |    | 1 |     |    | 8   | 1 |    |
| - 10 |   | 14 | 17 | *  | 16 | 8   |    |     |      |     |    |    | 3 |     |    |     |   |    |
|      |   |    |    |    | 1  | w.  | ÷  |     | 10   |     |    | ٠  | 4 |     | ¥  | n., |   | 14 |
|      |   |    | 9  | a, |    | 1   | 0  | 1   | Sec. | ł,  |    | 6  |   | 5   | 1  | 11  | ę |    |
| 1    |   |    |    |    |    | R,  | ł. | (b) |      | 19  |    |    |   |     |    |     |   | ł. |
|      |   | J. |    |    |    |     | 10 |     |      | 10  |    | 36 |   |     |    |     |   |    |

| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Q | 0 | 0 | 0 | 0 | 0 | 0 | Ö | 0 | 0 | Q | 0 | 0 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | Ø | 0 | Q | Q | 0 | 0 | 0 | Q | 0 | 0 | Q | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | Q | 0 | 0 | 0 | Q | 0 | 0 | ۰ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Q | 0 | 0 |
| 0 | 0 | • | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Q | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | • | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 |   | • | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |

В.



Figure 1. Comparative analysis between macro- and micro- array screening results, demonstrated for HSP90 protein binding to CFTR derived peptides; (A) Comparison of a cellulose-bound macro-array (top) and microscope slide micro-array (bottom), both containing 174 peptides derived from CFTR (original size). Recombinant Hsp90 protein with an N-terminal His-tag was expressed in E. coli and purified on Poros 20MC metal chelate media followed by Poros 20HQ anion exchange media. Binding of 231 nM Hsp90 to both peptide arrays was screened as described [9]. The detection of the binding was done by fluoroluminescence using primary anti-Hsp90 antibody and Alkaline Phosphatase conjugated secondary antibody. (**B-C**) Comparison between the observed binding peptides from both arrays, for matching the known profile of chaperone-binding peptides: high hydrophobicity and positive charge. Electrostatic charges (B) and hydrophilicity (C) were compared between all the binding peptides and all the non-binding peptides, as well as within peptides from the same groups categorized according to intensities of the binding, observed on the arrays. All calculations were performed using Innovagen's Peptide Property Calculator [6].