Supporting Information

The numbering of the references corresponds to that used in the main text.

Table 1. Synthesis of α -azido ketones by nucleophilic substitution of α -halo ketones

O , ↓ Hla	•NI	O ∬ Na
R^{1} \vee "9	•IN3	R^{1}
R^2	-	R^2

Substrate	Azide source	Conditions	Yield	Ref.
	n.d.	n.d.	73 %	15
	NaN ₃	DMSO/RT	85-95 % ^a	16
	NaN ₃	DMSO/RT	47-72 %	17
	NaN ₃	DMSO/RT	86-97 %	18
	NaN ₃	DMF/0°C	n.d.	19
	NaN ₃	DMF/RT	~100 %	20
	NaN ₃	NaN ₃ DMF/0 °C		21
	NaN ₃ DMF/0-10 °C		n.d.	22
	NaN ₃	IN ₃ DMF/AcOH/0°C		23
	NaN ₃	Me ₂ CO/RT	100 % ^a	24
	NaN ₃	Me ₂ CO/RT	99 %	25
	NaN ₃	Me ₂ CO/RT	81-94 %	26
	NaN ₃	Me_2CO-H_2O/Δ	83 %	27
	NaN ₃	Me ₂ CO-H ₂ O/50 °C	87 % ^a	28,29
	NaN ₃	Me ₂ CO-H ₂ O	72 % ^b	30
	NaN ₃	Me ₂ CO-H ₂ O/50 °C	88-100 %	31-33
	NaN.	Me ₂ CO-H ₂ O/	00 %	34
O	110113	β-CD/RT	99 /0	
Br	NaN ₃	Me ₂ CO-H ₂ O/RT	76-92 %	35
	TBAA	Me ₂ CO-H ₂ O/	nd	36
G´´		0-25 °C	n.u.	
	PSAA	n.d.	n.d.	37
	NaN ₃	EtOH-AcOH-H ₂ O/ 30 °C	76-93 %	38
	NaN ₃	EtOH-H ₂ O/0 °C	83-95 %	27
	NaN ₃	MeOH-H ₂ O/0 °C	n.d.	39
	NaN ₃	EtOH-Me ₂ CO-H ₂ O	79 % ^b	40
	NaN ₃	H_2O/Δ	65 %	27
	NaN ₃	[bmim][PF ₆]H ₂ O/RT	95-98 %	41
	NaN ₃	[emim][BF ₄]/RT 88-89 %		42
	PSAA		100 %	
	(Amberlite-	CH_2Cl_2/RT		43
	400)			
	PSAA		68-95 %	
	(Amberlite	CH ₂ Cl ₂ /30 °C		44
	IRA 900)			
	NaN ₃	PhMe/Aliquat 336 /55 °C	41-87 %	45

Substrate	Azide source	Conditions	Yield	Ref.
CI F F	NaN ₃	DMSO/100 °C	81 %	46
0	NaN ₃	DMF/RT	n.d.	47
	NaN ₃	KI/Me ₂ CO/RT	85 %	48
	NaN ₃	KI/Me ₂ CO	83 % ^b	49
	NaN ₃	Me ₂ CO/RT	95 %	50
G	NaN ₃	Me ₂ CO-H ₂ O/RT	76-78 %	51
O II	NaN ₃	DMSO/RT	80-98 %	18
Br	NaN ₃	DMSO	95 % ^b	52
B	NaN ₃	DMF/RT	86-96 %	53
G	NaN ₃	THF-H ₂ O/RT	n.d. ^a	54
R = alkyl	NaN ₃	MeOH/0 °C	95 %	55
Ph Ph Ph	NaN ₃	MeOH-AcOH/A	n.d.	56
O O Br	NaN ₃	DMSO/RT	86 %	18
	NaN ₃	Me ₂ CO-H ₂ O/Δ	100 %	57
	NaN ₃	DMSO/RT	73-90 %	58
R= H, Me, Et Hig=Cl, Br				
	NaN ₃	DMSO/RT	n.d.	59
O Br	NaN ₃	DMF/AcOH/10 °C	81 %	60
O Br O N Ph	NaN ₃	DMF/AcOH	92 % ^b	61

Substrate	Azide source	Conditions	Yield	Ref.
0 	NaN ₃	DMSO	n.d.	62
G O Br	NaN ₃	Me ₂ CO/ 18-crown-6/RT	73-95 %	26
O Br S	NaN ₃	Me ₂ CO/ 18-crown-6/RT	26 %	26
0	NaN ₃	MeOH-H ₂ O/ Δ	n.d. ^a	63
Br	NaN ₃	EtOH-AcOH-H ₂ O/ 0 °C	93 %	38
O Ph Br	NaN ₃	DMSO/RT	95 % ^a	16
O CI	NaN ₃	DMSO/RT	89 % ^a	64
	NaN ₃	Me_2CO/Δ	92 % ^c	65
O R Br R= branched alkyl	NaN ₃	EtOH-AcOH-H ₂ O/ 0 °C	100 % ^a	66
O	NaN ₃	MeOH/0 °C	90-95 % ^a	67
R=Bn, Ph	NaN ₃	NMP	65 % ^b	68
0	NaN ₃	EtOH-AcOH-H ₂ O/ 0 °C	85 %	38
CI	NaN ₃	H ₂ O-AcOH (few drops)/RT 87 %		13
	NaN ₃	Me ₂ CO/RT	75 %	69
	NaN ₃	H ₂ O-AcOH (few drops)/RT	n.d.	70
CI	NaN ₃	H ₂ O-AcOH (few drops)/RT	n.d.	70
EtOOC Br	NaN ₃	Me ₂ CO-H ₂ O/ 0 °C-RT	95 %	71
0	KN ₃	DMSO/RT	60-85 %	72,73
CI	NaN ₃	MeOH/0 °C	48-67 %	74
n=0, 1, 2	NaN ₃	DMSO/RT	n.d. ^a	75
Br	NaN ₃	DMSO	n.d. ^b	62

Substrate	Azide source	Conditions	Yield	Ref.
Ph _{1/1} , Br	NaN ₃	DMSO	n.d. ^b	62
C ₈ H ₁₇	NaN ₃ NMP		51 % ^{b,d}	76
	NaN ₃	NMP-AcOH/RT	65 %	68,77
Br	NaN ₃	NMP-AcOH/RT	96 %	77
AcO O O O O O O O O O O O O O O O O O O	NaN ₃	DMSO/H ₂ SO ₄ (cat.)/ 60 °C	70 %	68
	TMGA	MeCN/RT	83-92 %	78
and related systems	TMGA	MeNO ₂ /RT	95 %	79
Meo	NaN ₃	DMF-AcOH/RT	88 %	77
$ \begin{array}{c} $	NaN ₃	DMSO/RT	41-83 % ^f	80

n.d.: no data given ^a Used in the subsequent transformation step without any purification ^b Temperature not specified

 c > 5 % β elimination product d Overall yield of bromination and substitution steps

^e From 2α -iodocholestananone ^f d.e. ≥ 90 %, e.e. $\geq 95\%$

Table 2. Synthesis of α -azido ketones by nucleophilic substitution of α -sulfonyloxy ketones

$R^{1} \xrightarrow{O}_{R^{2}} OSO_{2}R \xrightarrow{:N_{3}} R^{1} \xrightarrow{O}_{R^{2}} N_{3}$					
Substrate	Azide source	Conditions	Yield	Ref.	
Me OTs O P OiPr OiPr	TBAA	THF/-10 °C	98 %	81	
$R = Ar, CH = CH_2 R' = H$ R = Ph, Et R' = Me	NaN ₃	CHCl₃/pillared clay/90-100 °C	88-97 %	82,83	
O OTs	NaN ₃	EtOH-AcOH- H ₂ O/0 °C	49 %	66	
O R R' R' R= alkyl, allyl, Ph	NaN3	Me ₂ CO/RT	68-96 %	84	
O O O Ts	NaN ₃	CHCl ₃ /pillared clay/RT	86-96 %	83	
O O O Ms	NaN ₃	DMF/RT	10 % ^a	85	
O Me O Me O Ms	NaN ₃	DMF/RT	67 %	86	
O O O Ns	NaN ₃	Me ₂ CO/ 18-crown-6/RT	50 %	26	
$X = \text{bond, CH}_2, O, S$	NaN ₃	Me ₂ CO/RT	68-96 %	84	
OTf	NaN ₃	MeOH/A	(69) ^b	87	

^a Reaction quenched at low conversion

^b Not isolated in pure form, major (75 %) product of a \geq 7 component mixture (GC analysis) obtained by vacuum distillation.

References

- 15 S. D. Higgins and C. B. Thomas, J. Chem. Soc., Perkin Trans 1 1983, 1483-1488.
- 16 J. Ackrell, J. M. Muchowski, E. Galeazzi and A. Guzman, *J. Org. Chem.* 1986, **51**, 3374-3376.
- 17 J. M. Holub, K. O'Tool-Colin, A. Getzel, A. Argenti, M. A. Evans, D. C. Smith, G. A. Dalglish, A. Rifat, S. L. Wilson, B. M. Taylor, U. Miott, J. Glersaye, K. S. Lam, B. J. McCranor, J. D. Berkowitz, R-B. Miller, J. R. Lukens, K. Krumpe, J. T. Gupton and B. S. Burnham, *Molecules* 2004, 9, 135-157.
- H. Takeuchi, S. Yanagida, T. Ozaki, S. Hagiwara and S. Eguchi, *J. Org. Chem.* 1989, 54, 431-434.
- 19 V. J. Majo and P. T. Perumal, J. Org. Chem. 1998, 63, 7136-7142.
- 20 V. J. Majo and P. T. Perumal, *Tetrahedron Lett.* 1997, **38**, 6889-6892.
- 21 N. De Meyer, A. Haemers, L. Mishra, H. K. Pandey, L. A. C. Pieters, D. A. Vanden Berghe and A. J. Vlietnick, *J. Med. Chem.* 1991, **34**, 736-746.
- D. Knittel, H. Hemetsberger and H. Weidmann, Monatsh. Chem. 1970, 101, 157-160.
- 23 P. N. D. Singh, S. M. Mandel, R. M. Robinson, Z. Zhu, R. Franz, B. S. Ault and A. D. Gudmundsdottir, *J. Org. Chem.* 2003, **68**, 7951-7960.
- R. Zhao, B.-C. Chen, M. S. Bednarz, B. Wang, A. P. Skoumbourdis, J. E. Sundeen, T. C. M. Dhar, E. J. Iwanowicz, B. Balasubramanian and J. C. Barrish, *ARKIVOC* 2007, xii, 36-42.
- 25 M. Pulici, F. Quartieri and E. R. Felder, J. Comb. Chem. 2005, 7, 463-473.
- 26 T. Patonay, É. Juhász-Tóth and A. Bényei, Eur. J. Org. Chem. 2002, 285-295.
- H. Bretschneider and H. Hörmann, *Monatsh. Chem.* 1953, 84, 1021-1032.
- 28 T. G. M. Dhar, J. Guo, Z. Shen, W. J. Pitts, H. H. Gu, B.-C. Chen, R. Zhao, M. S. Bednarz and E. J. Iwanowicz, *Org. Lett.* 2002, **4**, 2091-2093.
- 29 T. G. M. Dhar, Z. Shen, J. Guo, C. Liu, S. H. Watterson, H. H. Gu, W. J. Pitts, C. A. Fleener, K. A. Rouleau, N. Z. Sherbina, K. W. McIntyre, M. R. Witmer, J. A. Tredup, B.-C. Chen, R. Zhao, M. S. Bednarz, D. L. Cheney, J. F. MacMaster, L. M. Miller, K. K. Berry, T. W. Harper, J. C. Barrish, D. L. Hollenbaugh and E. J. Iwanowicz, *J. Med. Chem.* 2002, 45, 2127-2130.
- 30 R. K. Hunnur, P. R. Latthe and B. V. Badami, J. Chem. Res. 2005, 592-594.

- 31 E. J. Iwanowicz, S. H. Watterson, J. Guo, W. J. Pitts, T. G. M. Dhar, Z. Shen, P. Chen, H. H. Gu, C. A. Fleener, K. A. Rouleau, D. L. Cheney, R. M. Townsend and D. L. Hollenbaugh, *Bioorg. Med. Chem. Lett.* 2003, 13, 2059-2063.
- 32 T. G. M. Dhar, Z. Shen, H. H. Gu, P. Chen, D. Norris, S. H. Watterson, S. K. Ballentine, C. A. Fleener, K. A. Rouleau, J. C. Barrish, R. Townsend, D. L. Hollenbaugh and E. J. Iwanowicz, *Bioorg. Med. Chem. Lett.* 2003, **13**, 3557-3560.
- 33 X. Ouyang, E. L. Piatnitski, V. Pattaropong, X. Chen, H. Y. He, A. S. Kiselyov, A. Velankar, J. Kawakami, M. Labelle, L. Smith, J. Lohman, S. P. Lee, A. Malikzay, J. Fleming, J. Gerlak, Y. Wang, R. L. Rosler, K. Zhou, S. Mitelman, M. Camara, D. Surguladze, J. F. Doody and M. C. Tuma, *Bioorg. Med. Chem. Lett.* 2006, 16, 1191-1196.
- 34 M. S. Reddy, M. Nareder and K. Rama Rao, *Tetrahedron* 2007, **63**, 331-336.
- 35 S. H. Kim, J. U. Jeong, D. O. Choi and K. J. Lee, *Bull. Korean Chem. Soc.* 1993, **14**, 11-12.
- F. Navas, M. J. Bishop, D. T. Garrison, S. J. Hodson, J. D. Speake, E. C. Bigham, D. H. Drewry, D. L. Saussy, J. H. Liacos, P. E. Irving and M. J. Gobel, *Bioorg. Med. Chem. Lett.* 2002, 12, 575-579.
- P. Molina, P. M. Fresneda, P. Almendros, *Heterocycles* 1993, **36**, 2255-2258.
- 38 J. H. Boyer and D. Straw, J. Am. Chem. Soc. 1952, 74, 4506-4508.
- B. Batanero, J. Escudero and F. Barba, *Synthesis* 1999, 1809-1813.
- 40 E. Zbiral and J. Stroh, *Liebigs Ann. Chem.* 1969, **727**, 231-233.
- 41 N. M. T. Lourenco and C. A. M. Afonso, *Tetrahedron* 2003, **59**, 789-794.
- 42 Y. X. Li, W. L. Bao and Z. M. Wang, *Chinese Chem. Lett.* 2003, 14, 239-242.
- 43 A. Hassner and M. Stern, Angew. Chem., Int. Ed. Engl. 1986, 25, 478-479.
- 44 E. C. S. Brenelli, J. A. Brenelli and R. C. L. Pinto, *Tetrahedron Lett.* 2005, **46**, 4531-4533.
- 45 L. Widler, J. Green, M. Missbach, M. Susa and E. Altmann, *Bioorg. Med. Chem. Lett.* 2001, **11**, 849-852.
- 46 T. G. Archibald and K. Baum, J. Org. Chem. 1990, 55, 3562-3565.
- 47 L. C. Fardelone, J. A. R. Rodrigues and P. J. S. Moran, J. Mol. Cat. B 2006, **39**, 9-12.
- 48 U. Schmidt and J. Wild, *Liebigs Ann. Chem.* 1985, 1882-1894.
- 49 U. Schmidt, A. Lieberknecht, H. Grisser and H. Boekens, *Liebigs Ann. Chem.* 1985, 785-793.
- 50 K. M. Peese and D. Y. Gin, J. Am. Chem. Soc. 2006, **128**, 8734-8735.

- 51 S. W. You, M. K. Kim and K.-J. Lee, *Bull. Korean Chem. Soc.* 2000, **21**, 797-800.
- 52 P. J. S. Moran, J. A. R. Rodrigues, I. Joekes, E. C. S. Brenelli and R. A. Leite, *Biocatalysis* 1994, **9**, 321-328.
- 53 U. Ghosh, D. Ganessunker, V. J. Sattigeri, K. E. Carlson, D. J. Mortensen, B. S. Katzenellenbogen and J. A. Katzenellenbogen, *Bioorg. Med. Chem.* 2003, **11**, 629-657.
- 54 Y.-F. Zhu, R. S. Struthers, P. J. Connors, Y. Gao, T. D. Gross and J. Saunders, *Bioorg. Med. Chem. Lett.* 2002, **12**, 399-402.
- 55 P. Besse, H. Veschambre, M. Dickman and R. Chenevert, *J. Org. Chem.* 1994, **59**, 8288-8291.
- 56 J. H. Boyer, and D. Straw, J. Am. Chem. Soc. 1953, 75, 1642-1644.
- 57 C. J. Moody and J. G. Ward, J. Chem. Soc., Perkin Trans. 1 1984, 2903-2909.
- J. Bergman, J.-E. Bäckvall and J.-O. Lindström, *Tetrahedron*, 1973, **29**, 971-976.
- 59 V. A. Reznikov, G. I. Roshchupkina, T. V. Ribalova and Y. V. Gatilov, *Russ. Chem. Bull.*, *Int. Ed.* 2001, **50**, 874-881.
- 60 S. V. D'Andrea, A. Ghosh, W. Wang, J. P. Freeman and J. Szmuszkovicz, *J. Org. Chem.* 1991, **56**, 2680-2684.
- 61 Okide, G. B. *Tetrahedron* 1993, **49**, 9517-9524.
- 62 L. Benati, R. Leardini, M. Minozzi, D. Nanni, P. Spagnolo, S. Strazzari, G. Zanardi and G. Calestani, *Tetrahedron* 2002, **58**, 3485-3492.
- 63 S. S. Al-Hassan, R. J. Cameron, A. W. C. Curran, W. J. S. Lyall, S. H. Nicholson, D. R. Robinson, A. Stuart, C. J. Suckling, I. Stirling, H. C. S. Wood, *J. Chem. Soc.*, *Perkin Trans 1* 1985, 1645-1659.
- 64 W. Aelterman, N. de Kimpe, V. Tyvorskii, O. Kulinkovich, J. Org. Chem. 2001, 66, 53-58.
- 65 S. Mangelinckx, P. Van Vooren, D. De Clerk, F. Fülöp, N. De Kimpe, *ARKIVOC* 2006, **iii**, 202-209.
- 66 J. S. Dickschat, . Reichenbach, I. Wagner-Döbler and S. Schulz, S. *Eur. J. Org. Chem.* 2005, 4141-4153.
- 67 P. Besse, H. Veschambre, R. Chenevert and M. Dickman, *Tetrahedron: Asymmetry* 1994, **5**, 1727-1744.
- 68 A. Wolloch and E. Zbiral, *Tetrahedron* 1976, **32**, 1289-1292.
- 69 J. Hannedouche, P. Peach, D. J. Cross, J. A. Kenny, I. Mann, I. Houson, L. Campbell, T. Walsgrove and M. Wills, *Tetrahedron* 2006, **62**, 5549.

- 70 M. O. Forster and H. E. Fierz, J. Chem. Soc. 1908, 669-678.
- 71 A. Padwa, M. M. Sá, and M. D. Weingarten, *Tetrahedron*, 1997, **53**, 2371-2386.
- 72 K. M. Ermolaev, Zh. Org. Khim. 1972, 8, 1828-1831, Chem. Abstr. 1973, 78, 29291s.
- 73 K. M. Ermolaev, V. I. Maimind, *Zh. Org. Khim.* 1969, **5**, 1218-1221, *Chem. Abstr.* 1969, **71**, 101374w.
- 74 F. Effenberger, T. Beisswenger, and R. Az, *Chem. Ber.* 1985, **118**, 4869-4876.
- 75 O. E. Edwards and K. K. Purushothaman, *Can. J. Chem.* 1964, **42**, 712-716.
- 76 S. C. Smith and C. H. Heathcock, J. Org. Chem. 1992, 57,6379-6380.
- 77 B. Schönecker and K. Ponsold, J. Prakt. Chem. 1971, **313**, 817-824.
- C. Li, T.-L. Shih, J. U. Jeong, A. Arasappan and P. L. Fuchs, *Tetrahedron Lett.* 1994, 35, 2645-2646.
- 79 J. U. Jeong, C. Guo and P. L. Fuchs, P. L. J. Am. Chem. Soc. 1999, 121, 2071-2084.
- 80 D. Enders and D. Klein, *Synlett* 1999, 719-720.
- 81 G. Penz and E. Zbiral, *Chem. Ber.* 1985, **118**, 4131-4143.
- 82 R. S. Varma and D. Kumar, *Catal. Lett.* 1998, **53**, 225-227.
- 83 R. S. Varma, K. P. Naicker and D. Kumar, *J. Mol. Catal. A: Chem.* 1999, **149**, 153-160.
- 84 T. Patonay and R. V. Hoffman, J. Org. Chem. 1994, 59, 2902-2905.
- (a) T. Patonay, M. Rákosi, G. Litkei, T. Mester, R. Bognár, in *Flavonoids and Bioflavonoids, Current Research Trends*, ed. L. Farkas, M. Gábor, F. Kállay, Akadémiai Kiadó, Budapest Elsevier, Amsterdam, 1977, 227-234; (b) T. Patonay, M. Rákosi, G. Litkei, R. Bognár, R. *Liebigs Ann. Chem.* 1979, 161-173.
- 86 T. Patonay, E. Patonay-Péli, G. Litkei, L. Szilágyi, G. Batta, Z. Dinya, J. Heterocycl. Chem. 1988, 25, 343-347.
- 87 X. Creary and A. J. Rollin, J. Org. Chem. 1979, 44, 1798-1806.