Supplementary Information

Lyotropic Liquid Crystal Engineering – Ordered Nanostructured Small Molecule Amphiphile Self-Assembly Materials by Design

Celesta Fong,^{a,*} Tu Le^b & Calum J. Drummond^{c,*}

 ^a CSIRO Materials and Science & Engineering (CMSE), Bag 10, Clayton South, VIC 3169, Australia; Fax: 61 3 9545 2515; Tel: 61 3 9545 2608; E-mail: <u>Celesta.Fong@csiro.au</u>
 ^bCSIRO Materials and Science & Engineering (CMSE), Bag 10, Clayton South, VIC 3169, Australia; Tel: 61 3 9545 8113; E-mail: <u>Tu.Le@csiro.au</u>
 ^c CSIRO Materials and Science & Engineering (CMSE), Bag 10, Clayton South, VIC 3169,

*Australia; Tel: 61 3 9545 2050; E-mail: <u>Calum.Drummond@csiro.au</u>
^{*} Corresponding Authors*

QSPR modelling

Input descriptors

Descriptors are mathematical descriptions of molecular properties of the surfactant molecules that are used in developing QSPR models. We included descriptors calculated for the whole surfactant molecules as well as those computed for head groups and tails with methyl terminus.

The simplest of these are atomistic representations. Molecules were represented by counting the numbers of atoms of specific elemental type with specific numbers of connections as well as the number of rings of varying sizes. Although this representation is simple, it has been shown to be adequate to encode not only physicochemical parameters such as hydrophobicity and molar refractivity but also biological acitivity such as dihydrofolate reductase inhibition¹.

The Burden index (B) which encodes the connectivity of the molecules and nature of the valence electrons² was also calculated. These eigenvalue descriptors are provided by diagonalising the adjacency matrices derived from the molecular graphs. These matrices describe how atoms in a molecule are connected. Off-diagonal elements of the matrices are squareroots of the number of bonds between two atoms if these atoms are chemicalley bonded and 0 if they are not.

The binned charges index³ contains descriptors that describe the charge properties of the compounds (and indirectly the dipolar and hydrogen bonding properties) which are

encoded by charge fingerprint descriptors. Atom charges were computed using electronegativity equalization methods for each structure and the charges for each element type were used to populate bins. For each of the elemental types represented in the data set, the value of the charge was compared to bin-boundaries. The vector of bin occupancies for all element types represented the charge fingerprint.

Functional group representations were also employed to deduce their contributions to the phase behaviour of the drug delivery carriers. Although there is some overlap with the atomistic representation, functional group counts such as number of primary, secondary or tertiary hydroxyl groups (nOHp, nOHs or nOHt), number of donor or acceptor atoms for hydrogen bonds (nHDon or nHAcc) and number of esters - aliphatic and aromatic - (nRCOOR and nArCOOR) are relatively informative. The functional group counts included in this study were calculated using the DRAGON software package⁴.

We also used the DRAGON software package to calculate other molecular descriptors including the unsaturation index⁵ Ui, hydrophilic factor⁵ Hy, molar refractivity⁶ AMR, topological polar surface areas⁷ using N, O polar contributions TPSA(NO) or using N,O,S,P polar contributions TPSA(Tot) and different octanol-water partition coefficients⁶, ⁸ MLOGP or ALOGP.

Multiple linear regression

The approach employed to derive the relationship between the formation of the inverse phase (indicator parameter has the value of 1 if inverse phases can be formed and 0 otherwise) and relevant descriptors was multiple linear regression with expectation maximization (MLREM)^{9, 10}. This method pruned out the least informative descriptors by using the sparse Laplacian prior feature selection. The sparsity of the MLREM was tuned progressively until the quality of the derived models deteriorated drastically, indicating that some of the most relevant descriptors have been removed. The data set for 82 surfactants listed in Table 1 was separated into a training set (80%) and a test set (20%) using the *K*-means clustering algorithm. The best MLREM model is the one that can predict most accurately the formation of the inverse phase for both the training and test sets using the smallest number of descriptors. Using this approach, the most important descriptors that contribute to the formation of the inverse phase were be found, as shown in Table 2.

Table 1. List of surfactants considered for QSPR modelling

1	Phytantriol	42	Phytanyl biuret	
2	Monopentadecenoin	43	Hexahydrofarnesyl biuret	
3	Monomyristolein	44	1-(2-hydroxyethyl)-1-oleyl biuret	
4	Monoolein	45	1-(2-hydroxyethyl)-1-phytanyl biuret	
5	Oleyl glycerate	46	1-O-(3,7,11,15-tetramethylhexadecyl)erythritol	
6	Phytanyl glycerate	47	mono-O-(3,7,11,15-tetramethylhexadecyl)pentaerythritol	
7	Phytanyl ethylene oxide	48	1-(O-5,9,13-trimethyltetradecyl)erythritol	
8	Phytanyl di ethylene oxide	49	mono-(O-5,9,13-trimethyltetradecyl)pentaerythritol	
9	Phytanyl tri ethylene oxide	50	1-O-(3,7,11-trimethyldodecyl)erythritol	
10	Phytanyl tetra ethylene oxide	51	mono-O-(3,7,11-trimethyldodecyl)pentaerythritol	
11	Phytanyl penta ethylene oxide	52	1-O-(3,7,11,15-tetramethylhexadecanoyl)glycerol	
12	Phytanyl hexa ethylene oxide	53	1-O-(3,7,11,15-tetramethylhexadecanoyl)erythritol	
13	Phytanyl hepta ethylene oxide	54	mono-O-(3,7,11,15-tetramethylhexadecanoyl)pentaerythritol	
14	Phytanyl octa ethylene oxide	55	1-(O-5,9,13-trimethyltetradecanoyl)glycerol	
15	Hexahydrofarnesyl ethylene oxide	56	1-(O-5,9,13-trimethyltetradecanoyl)erythritol	
16	Hexahydrofarnesyl di ethylene oxide	57	mono-(O-5,9,13-trimethyltetradecanoyl)pentaerythritol	
17	Hexahydrofarnesyl tri ethylene oxide	58	2-monoolein	
18	Hexahydrofarnesyl tetra ethylene oxide	59	Monoerucin	
19	Hexahydrofarnesyl penta ethylene oxide	60	Monovaccenin	
20	Hexahydrofarnesyl hexa ethylene oxide	61	Oleyl ethanolamide	
21	Hexahydrofarnesyl hepta ethylene oxide	62	Linoleoyl ethanolamide	
22	Hexahydrofarnesyl octa ethylene oxide	63	γ - linolenoyl ethanolamide	
23	Glyceryl monophytanoate	64	3,7-dimethyl octanoyl monoethanolamide	
24	Glyceryl monohexahydrafarnesoate	65	Hexahydrofarnesyl monoethanolamide	
25	2-glyceryl monohexahydrafarnesoate	66	Phytanoyl monoethanolamide	
26	Octadecyl glycerate	67	Phytanoyl amide	
27	Hexahydrofarnesyl glycerate	68	Hexahydrofarnesyl amide	
28	1-glyceryl oleyl ether	69	3,7-dimethyl octanoyl amide	
29	1-dodecyl urea	70	Dodecaoxyethylene mono- <i>n</i> -dodecyl ether	
30	1-octadecyl urea	71	1-octadecyl urea	
31	cis-octadec-9-enyl urea	72	Linolenyl urea	
32	cis-octadec-9-enyl biuret	73	1-decyl urea	
33	cis, cis-octadec-9,12-dienyl urea	74	5-decyl urea	
34	3,7,11,15-tetramethyl-hexadecyl urea	75	1-dodecyl urea	
35	3,7,11-trimethyldodecyl urea	76	2-dodecyl urea	
36	1-(2-hydroxyethyl)-1-oleyl urea	77	4-dodecyl urea	
37	1-(2-hydroxyethyl)-1-phytanyl urea	78	6-dodecyl urea	
38	3-(2-hydroxyethyl)-1-oleyl urea	79	1-O-(5,9,13,17-tetramethyloctadecyl)erythritol	
39	3-(2-hydroxyethyl)-1-phytanyl urea	80	mono-O-(5,9,13,17-tetramethyloctadecyl)pentaerythritol	
40	3-(2-hydroxyethyl)-1-hexahydrofarnesyl urea	81	1-O-(5,9,13,17-tetramethyloctadecanoyl)erythritol	
41	1-(2,3-dihydroxypropyl)-1-oleyl urea	82	mono-O-(5,9,13,17-tetramethyloctadecanoyl)pentaerythritol	

Table 2. Important descriptors selected by MLREM

1	Tail - molar refractivity	8	Head - number of ether groups
2	Tail - molecular weight	9	Tail - hydrophilic factor
3	Tail - number of double bond of carbons	10	Head - number of quaternary carbons
4	Tail - logarithm of octanol/water partition	11	Molecule - logarithm of octanol/water
	coefficient		partition coefficient
5	Tail - unsaturation index	12	Head - number of imides
6	Head - number of primary hydroxyl groups	13	Head - logarithm of octanol/water
			partition coefficient
7	Head - hydrophilic factor	14	Molecule - unsaturation index

- ¹ F. R. Burden, *Quantitative Structure-Activity Relationships*, 1996, **15**, 7.
- ² D. A. Winkler and F. R. Burden, *Molecular Simulation*, 2000, **24**, 243.
- ³ F. R. Burden, M. J. Polley, and D. A. Winkler, *Journal of Chemical Information and Modeling*, 2009, **49**, 710.
- ⁴ TALETE srl, in 'Dragon for Windows (Software for Molecular Descriptor Calculations)', 2007.
- ⁵ R. Todeschini and V. Consonni, 'Handbook of Molecular Descriptors', Wiley-VCH, 2000.
- ⁶ V. N. Viswanadhan, A. K. Ghose, G. R. Revankar, and R. K. Robins, *Journal of Chemical Information and Computer Sciences*, 1989, **29**, 163.
- ⁷ P. Ertl, B. Rohde, and P. Selzer, *Journal of Medicinal Chemistry*, 2000, **43**, 3714.
- ⁸ I. Moriguchi, S. Hirono, Q. Liu, I. Nakagome, and Y. Matsushita, *Chemical & Pharmaceutical Bulletin*, 1992, **40**, 127.
- ⁹ F. R. Burden and D. A. Winkler, *Qsar & Combinatorial Science*, 2009, **28**, 645.
- ¹⁰ F. R. Burden and D. A. Winkler, *Qsar & Combinatorial Science*, 2009, **28**, 1092.