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Entropy and Partition Function

Eq. 5 in the Main Text reads

S =
∂
(
kT lnZ

)
∂T

(1)

if the energy levels accessible to the system are similar one another, i.e. Ej → const, the system

partition function becomes

Z =
M∑
i

e−βC = M e−βC (2)

with β = 1
kT and M the number of accessible states at given thermodynamic conditions. By

rearranging Eq. 2 as

lnZ = ln M − βC

kT lnZ = kT lnM − C

one obtains

∂
(
kT lnZ

)
∂T

= k lnM (3)

that is Eq. 6 in the Main Text. Interestingly, Eq. 3 states that if Ej → const, entropy can

written in a closed form which depends logarithmically on the total number of accessible states,

M . Importantly, this result shows that S converges very slowly with M such that its value can be

analytically evaluated for none but the simplest systems (see Main Text).
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Molecular self-assembly from thermal to chemical equilibrium

Given a closed system in which the following chemical transformation αa 
 βb takes place, its

absolute free energy depends on the temperature T , volume V , and chemical composition

F = F (V, T, na, nb) (4)

where na and nb are, respectively, the number of moles of a and b in the given volume. From Eq. 48

it follows that

dF = −p dV − S dT + µa dna + µb dnb (5)

where

µi =
(

∂F

∂ni

)
T,V,nj

(6)

is called the chemical potential of the i-th specie. At constant temperature and volume, Eq. 5

yields

dF = µa dna + µb dnb (7)

which shows that an infinitesimal variation in the system’s chemical composition corresponds to a

change in free energy that depends on the chemical potentials of the species involved. Therefore,

if one introduces the extent of reaction variable ξ, such that

dna = −α dξ

dnb = β dξ (8)

where the minus sign is used for consumption and the plus sign for production, and dξ = dn,

because ξ describes the amount of matter that is chemically transformed, Eq. 7 can be usefully

rewritten as (
dF

dn

)
V,T

= βµb − αµa = ∆µb,a (9)

which makes the link between the system’s free energy and the difference in the chemical potential

of the species involved. At chemical equilibrium dF = 0, i.e. the system’s free energy lies in a

minimum, and Eq. 9 yields

∆µb,a = βµb − αµa = 0 (10)
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which states that chemical equilibrium implies the equality of the chemical potentials multiplied

by their stoichiometric coefficients as βµb = αµa. The latter provides a general thermodynamic

condition for chemical equilibrium, i.e.
∑

i νiµi = 0.

The statistical mechanics expression of the chemical potential of the i-th specie

µi = −kT

(
∂ lnZ

∂ni

)
T,V,nj

(11)

provides the link between the concepts of thermal and chemical equilibrium. If we now assume

that the chemical species are independent and distinguishable [1], i.e. a mixture of ideal gases

or a highly diluted solution, the system’s partition function can be written as the product of the

partition functions of the individual components as

Z(V, T, na, nb) = Z(V, T, na) Z(V, T, nb) (12)

In addition, if particles of a chemical species are considered as independent and indistinguishable

the canonical partition function can be expressed in terms of molecular partition functions, zi, and

Eq.12 becomes

Z(V, T, na, nb) =
za(V, T )na

na!
zb(V, T )nb

nb!
(13)

By introducing the result of Eq. 13 into Eq. 11 one obtains expressions for the chemical potentials

in terms of molecular partition functions

µi = −kT ln
zi(V, T )

ni
(14)

where Stirling’s approximation has been used for ni! Note that the latter is an asymptotic ap-

proximation that holds only when n is large; it follows that the equivalence of molecular partition

functions and molecules, which we are going to derive, holds only within this boundary. Eq.14

states that under the previous assumptions (i.e independence of chemical species and particles) the

chemical potential of one species can be determined as if the others were not present. Importantly,

this result allows to move from the thermal equilibrium interpretation of self-assembly (Fig. 1 in

Main Text) to chemical equilibrium (Fig. 4 in Main Text), which opens the way to a molecular

interpretation of self-assembly. By integrating Eq. 9

∆µb,a = β

(
− kT ln

zb

nb

)
− α

(
− kT ln

za

na

)
(15)

and rearranging the result, one can express the difference in chemical potential between the self-

assembled state (b) and the melt (a) as

∆µb,a = −kT ln
[( zb

nb

)β(na

za

)α
]

= −kT ln
zβ
b

zα
a

+ kT ln
nβ

b

nα
a

(16)
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where the first term of the rhs of Eq. 16 depends on the molecular partition functions only and is

a (chemical) equilibrium contribution, while the second term depends on the actual concentrations

of the chemical species involved and can be considered as an out-of-chemical-equilibrium correction

to the difference in free energy per molecule. Thus, Eq. 16 can be rewritten as

∆µb,a = ∆µ◦b,a −∆µ′b,a (17)

where the signs ◦ and ′ indicate chemical equilibrium and out-of-chemical-equilibrium conditions,

respectively. Finally, at chemical equilibrium (see Eq. 10) the latter yields

∆µ◦b,a = −kT ln
(zβ

b

zα
a

)
= −kT ln

(nβ
b

nα
a

)◦
V,T

= kT lnKeq

∣∣∣
V,T

(18)

that is the equilibrium result of Eq. 13 in the Main Text. We note that Eq. 18 implies the

equivalence of molecular partition functions and number of molecules at chemical equilibrium, i.e.

zβ
b /zα

a =
(
nβ

b /nα
a

)◦, which provides a straightforward interpretation of Eq. 16. In fact, introducing

this equivalence and rearranging Eq. 16 gives

∆µb,a = −kT ln
(

n◦b
nb

)β

− kT ln
(

na

n◦a

)α

(19)

By comparing Eqs. 16 and 18, it appears that at constant temperature and volume the out-of-

chemical-equilibrium character of self-assembly uniquely arises from the difference in composition

between the initial and equilibrium conditions, i.e. ni 6= n◦i . Eq. 19 captures this aspect and

provides a general and insightful description of self-assembly in terms of molecular concentrations

at any initial conditions. In fact, for a molecular system in which the self-assembled state (b) and

the melt (a) are in equilibrium experience suggests that a sudden increase in the concentration

of molecules in the monomeric state (i.e. addition of an aliquot of a) will result in a free energy

gradient towards assembly and a new equilibrium state. Here, we show how Eq. 19 may account for

this. In fact, when fresh monomers are introduced into the system, the concentration of molecules

in the a state will suddenly increase such that na > n◦a, while nb = n◦b . It follows that na/n◦a

will be larger than the unity and its logarithm will be positive. Thus, the first term of the r.h.s.

of Eq. 19 will be zero and the second term negative, which yields ∆µb,a < 0 and ∆µ′b,a < ∆µ◦b,a.

Given that µ◦b = µ′b, the latter implies µ′a > µ◦a. Hence, Eq. 19 predicts that a sudden increase in

the concentration of the melt will result in an increased chemical potential of a (or equivalently

an increase in the effective free energy per molecule) that gives rise to the mentioned free-energy

gradient; see Fig. S1.
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FIG. S1: Thermodynamics of self-assembly at thermal equilibrium. The figure provides a pictorial rep-

resentation of the interpretation of chemical equilibrium grasped by Eq. 16. The signs ◦ and ′ indicate,

respectively, chemical equilibrium and out-of-chemical-equilibrium conditions.

Critical Aggregate Concentration

Eq. 18 of Main Text reads

Nb = mNm
a e−mβ∆µ◦b,a (20)

with m the stoichiometric coefficient of the assembly reaction, ma 
 b, Na and Nb the number of

building blocks respectively populating the disassembled and the assembled state, and ∆µ◦b,a the

free energy change of transferring one molecule from the monomeric to the self-assembled phase

at standard chemical equilibrium conditions; here β = 1
kT . As Nb cannot increase beyond Ninit,

otherwise it violates the mass balance, Eq. 20 gives

Na ≤
(Ninit

m

) 1
m

eβ∆µ◦b,a (21)

For increasing values of m, i.e. larger and larger self-assembled architectures, (Ninit
m )1/m goes to

one and Eq. 21 provides an expression for the so-called critical aggregate concentration (CAC)

(Na)CAC ≈ eβ∆µ◦b,a (22)

which predicts the concentration of monomers above which molecules start aggregating; see Eq. 19

of Main Text. This result, which happens to be quite useful, is exact for large values of m. The
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proof for Eq. 22 follows. Observing that x1/x = eln x/x (see note 1), in fact, it follows that

lim
x→∞

x1/x = lim
x→∞

eln x/x = 1, (23)

Given that

lim
x→∞

α1/x = 1, (24)

where α is a constant, it is straightforward to show that by setting α = Ninit and solving for x = m

Eq. 23 gives

lim
m→∞

(
Ninit

m

1
m

)
= 1 (25)

This result has been used to derive Eq. 22 from Eq. 21, see above.

Molecular design principles for predicting self-assembly

The canonical partition function for a system of n molecules at the temperature T and volume

V in the limit of idealized highly diluted solutions (i.e. particles can be treated as independent)

can be expressed in terms of molecular partition functions as

Z(n, V, T ) =
[z(V, T )]n

n!
(26)

By introducing the rigid-rotor harmonic-oscillator approximation (i.e. the rotational and vibra-

tional molecular degrees of freedom can be treated separately) and assuming the independence of

the electronic and nuclear degrees of freedom, each molecular partition function can be decomposed

as

z(V, T ) = ztr zrot zvib zelec znucl (27)

where ztr, zrot, zvib, zelec, and znucl are the translational, rotational, vibrational, electronic and

nuclear molecular partition functions, respectively. Within these approximations and adopting

the convention that znucl = 1 as done in Ref. [1], the canonical partition function can be finally

expressed as

Z(n, V, T ) =
(ztr zrot zvib zelec)n

n!
(28)

1 Assuming that x = eln(x) by computing the logarithm at both hand sides one can easily show that ln(x) =
ln(eln(x)) = ln(x) ln(e) = ln(x).
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By solving Schrödinger’s equation for a particle in a three-dimensional box, a rigid rotor, and a

simple harmonic oscillator and evaluating the corresponding partition functions in the classical

limit, one can find analytical expressions for the translational,

ztr(V, T ) =
(

2πmkT

h2

)3/2

V, (29)

the rotational,

zrot(T ) =
√

π

σ

(
8π2IkT

h2

)3/2

, (30)

and the vibrational,

zvib(T ) =
κ∏
i

kT

hνi
, (31)

molecular partition functions, with m the mass, I the moment of inertia, σ the symmetry number,

νi the frequency of the i-th vibrational degrees of freedom of the molecules. For the sake of rigour

we note that: (i) the moment of inertia of an asymmetric top is defined by its principle moments

of inertia Ix, Iy, and Iz, such that I3/2 in Eq. 30 becomes (IxIyIz)1/2; (ii) the symmetry number of

a polyatomic molecule is classically introduced to avoid over-counting indistinguishable molecular

configurations in phase space and actually corresponds to the number of pure rotational elements

(including identity) in the point group of a non linear molecule; (iii) the normal-mode frequencies

νi in Eq. 31 are wave frequencies, which correspond to 1
2π

√
k/µ for a diatomic molecule having

a reduced mass equal to µ and a vibrational constant equal to k. Finally, by neglecting the

contributions arising from excited electronic states, which is a good approximation at ordinary

temperatures, the electronic molecular partition function can be written as

zelec(T ) = ωe1 eDe/kT (32)

with ωe1 the degeneracy and −De the energy of the ground electronic state; we note that De

actually corresponds to the energy that is required to break apart the molecule into separated

electronically unexcited atoms at rest [1]. Introducing these results into Eq. 27, one can express

each molecular partition function in terms of the Phisico-Chemical properties of the building blocks

for self-assembly as

z(V, T ) =
(

2πmkT

h2

)3/2

V ·
√

π

σ

(
8π2IkT

h2

)3/2

·
κ∏
i

kT

hνi
· ωe1e

De/kT (33)

Most importantly, introducing this result into Eq. 26 and using Stirling’s approximation we are

finally able to express the logarithm of the canonical partition function as a function of the ensemble
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conditions (n, V, T ) as well as the molecular properties of the building blocks (m, I, νi,−De)

lnZ(n, V, T ) = n

[
ln

(2πmkT

h2

)3/2 V e

n
+ ln

√
π

σ

(8π2IkT

h2

)3/2
+

∑
i

ln
kT

hνi
+ ln ωe1 +

De

kT

]
(34)

Indeed, Eq. 34 is key for our theoretical interpretation of self-assembly because, as we shall see, it

provides means to translate the three statistical-mechanics principles for predicting self-assembly

introduced at the end of Section 1 (see Main Text) into guidelines for chemical design.

Low Initial Entropy

Assuming an idealized solution behavior (i.e. both molecular events and particles can be treated

as independent, see Main Text), Eq. 34 provides an analytical expression for the absolute entropy,

S =
∂kT lnZ(n, V, T )

∂T
=

= nk

[
5
2

+ ln
(2πmkT

h2

)3/2
+ ln

V

n
+

3
2

+ ln
√

π

σ
+ ln

(8π2IkT

h2

)3/2
+

∑
i

(
1 + ln

kT

hνi

)
+ lnωe1

]
, (35)

which can be effectively used to translate the first principle for predicting self-assembly (“Low

Initial Entropy”) into chemical words. In fact, Eq. 35 states that any increase in the number of

molecules (n) or system’s volume (lnV ), as well as in the mass (lnm3/2) or the moment of inertia

(ln I3/2) of the molecular building blocks, or equivalently a decrease in their vibrational frequencies

(ln kT
hν ), will lead to an overall increase of the absolute initial entropy. It follows that in order to

minimize the initial absolute entropy, so as to cope with the first principle for predicting self-

assembly, optimized building blocks should be light (low-molecular weight), isotropic (symmetric

shape) and stiff (rigid). Incidentally, we note that within the above approximations it is possible

to separate the absolute entropy into three independent contributions such that Eq. 35 can be

rewritten as

S = Str + Srot + Svib =

= nk

[
5
2

+ ln
(2πmkT

h2

) 3
2 V

n

]
tr

+ nk

[
3
2

+ ln
√

π

σ

(8π2IkT

h2

) 3
2

]
rot

+ nk

[∑
i

(
1 + ln

kT

hνi

)]
vib

(36)

As we shall see, this result is useful to provide a molecular interpretation of the “High Relative

Entropy” principle for predicting self-assembly.
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Low Final Enthalpy

Starting from the statistical-mechanics definition of the thermodynamic energy in the canonical

ensemble,

E = kT 2 ∂ lnZ(n, V, T )
∂T

, (37)

the result of Eq. 34 can be used to provide a molecular interpretation of the “Low Final Enthalpy”

principle for predicting self-assembly. In the limit of idealized solution behavior, in fact, the

thermodynamic energy of the assembled state (b) is

Eb =
3
2
nbkT − nbDe,b (38)

that shows that the probability of self-assembly can be increased by increasing De,b, which min-

imizes the potential energy of self-assembled state (Eb). It is important to note that even small

changes in De,b are expected to produce sizeable effects on the canonical partition function, as the

electronic contribution of Eq. 34 is the only term that goes linear with lnZ. In chemical-design

words, the optimization required by the “Low Final Enthalpy” principle translates into: (i) max-

imize the strength of molecular recognition (i.e. the binding energy per building block); and (ii)

maximize the coordination number in the final self-assembled state (i.e. the number of nearest

neighbors per molecule in the final architecture). The former rule provides guidelines on the type

of interactions to be used for predicting self-assembly; the latter conveys information on the struc-

ture of the building blocks as well as the topology of the final architecture. In fact, in order to

maximize the strength of molecular recognition one should engineer binding sites based on the

following interaction types in the given order: covalent bonds (covalent) > weak or semi-covalent

bonds such as disulfide bridges (semi-covalent) > coordinate-covalent bonds in metal-ligand(s)

complexes (metal-ligand) > charge-charge electrostatic interactions like salt-bridges (Coulomb) >

H-bonding interactions (H-bond) > isotropic Van der Waals interactions (vdW). In other words,

the “Low Final Enthalpy” principle would prescribe the use of recognition events based on the

previous ranking, from the strongest (covalent) to the weakest (vdw), to increase the probabil-

ity of self-assembly. This conclusion is not very surprising and has been extensively exploited to

predict self-assembly of small-molecule compounds. What is perhaps more interesting is that the

latter does not hold necessarily true for large molecular building blocks, where the density of in-

teraction sites may play the dominant role. Consistently, the use of vdW interactions, which are

individually weak but additive, is common in Nature to promote self-assembly of large biomolecu-

lar complexes, such as the virus capsid, where the size of the molecular building blocks and shape
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complementarity are likely to be the key to association [2]. In this respect, it is important to note

that covalent and semi-covalent interactions, which are expected to contribute significantly to the

thermodynamic stability of the assembled state (see above), are perhaps not an optimal choice:

on the one hand, they introduce strong constraints on the chemical nature of the building blocks,

which dramatically reduce the chemical space available for the molecular design; on the other hand,

they strongly reduce the reversibility of the recognition events, which results in high free-energy

barriers on the self-assembly pathway and thus frustration. The latter has been recently shown to

hamper self-assembly kinetically, making the system behave as a glass at ordinary temperature [3].

By contrast, multiple H-bonding interactions, which can be easily tuned by varying the number of

donor and acceptor groups in a single chemical moiety as well as metallo-ligand interactions appear

to be the best candidates for predicting self-assembly of medium-sized building blocks.

On the second rule arising from the “Low Final Enthalpy” principle, it is straightforward to

see that for a given energy per recognition event, the self-assembled architecture corresponding to

the largest number of neighbors (i.e. maximum coordination number) will be thermodynamically

most favored. In chemical-design words, the latter implies that molecular scaffolds which are not

directly involved in molecular recognition could be engineered as well, for instance to maximize

the coordination number (see Fig. S2). Thus, the geometry of the building blocks as well as the

number of recognition sites per molecule are expected to play a critical role to program of the final

architecture [4].

FIG. S2: Engineering supramolecular architectures by modulating the molecular shape and the density

of recognition per molecule. Three architecture corresponding to different coordination numbers (n) are

shown. Each architecture sketches a typical molecule in the assemble state (red) interacting with n nearest

neighbors through recognition events (light blue).

In conclusion, the “Low Final Enthalpy” principle translates into engineering building blocks

with strong recognition energies that self-assemble into architectures with high coordination num-
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bers. Incidentally, the concurrence of the two would result in molecular building blocks with a

strong anisotropy of interactions, which has been recently proposed to be a molecular requirement

for the emergence of supramolecular networks at surfaces [5].

High Relative Entropy

Finally, the third principle for predicting self-assembly (“High Relative Entropy”) can be in-

terpreted by analyzing the difference in entropy between the initial disassembled (a) and the final

self-assembled state (b). Specifically, we aim at identifying the molecular determinants that can

modulate the entropy change on self-assembly at standard state, i.e. the difference in entropy at

chemical equilibrium due to the chemical nature of the species involved.

For the generalized self-assembly reaction, αa 
 βb, and assuming β = 1 the entropy change

at standard state 2 is given by

∆S◦b,a = S◦b − αS◦a (39)

By introducing the result of Eq. 36 and rearranging 3, Eq. 39 gives

∆S◦b,a = R

[
ln

(mb

ma

) 3
2 − (α− 1)

(
5
2

+ ln
(2πmkT

h2

) 3
2 V

n

)]
tr

+

R

[
ln

[σa

σb

√
IxIyIzb√
IxIyIza

]
− (α− 1)

(
3
2

+ ln
√

π

σ

(8π2IkT

h2

) 3
2

)]
rot

+

R

[ α(3na−6)∑
i

ln
(νi,a

νi,b

)
+ (α− 1)

6∑
i

(
1 + ln

kT

hνi,b

)]
vib

(40)

where R is the gas constant that replaces nk at standard state. Furthermore, considering that

mb/ma = α,
√

IxIyIza,b
= I

3
2
a,b, and κ = α(3na − 6) (see note 4 for details) and using the result of

Eq. 36, the entropy change on self-assembly can be meaningfully formulated as

∆S◦b,a = R

(
3
2

lnα− (α− 1)S
tr

a

)
tr

+ R

(
3
2

ln
Ib

Ia
− (α− 1) S

rot

a

)
rot

+ R

( κ∑
i

ln
(νi,a

νi,b

)
+ (α− 1)

6∑
i

S
vib

i,b

)
(41)

2 The standard state is taken to be 1 M, i.e. na = nb and equal to Avogadro’s number, and V is 1 l.
3 The result of Eq. 40 is obtained by considering that α = (α− 1) + 1.
4 From mass balance the generalized self-assembly reaction αna−βnb = 0 can be written as βmb = αma, from which

follows that mb/ma = α under the assumption that β = 1. In addition, it is convenient to express the moment

of inertia of one particle through the geometric average of its principal components such that (IxIyIz)
1
2
i = I

3
2
i .

Finally, although Nb = αNa, (with Na and Nb the number of atoms in the monomer and the self-assembled particle,
respectively) the actual number of vibrational degrees of freedom varies during association. Thus, a one-to-one
comparison of the vibrational frequencies before and after self-assembly can be done only for a reduced number
κ = α(3Na − 6) of degrees of freedom.
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which provides an expression of the relative entropy on self-assembly in terms of the Physico-

Chemical properties of the particles before and after association (mb/ma, Ib/Ia, νa/νb).

Interestingly, Eq. 41 shows that the relative entropy on self-assembly is subjected to three

independent contributions, which depend on the size (i.e. lnα), the shape (i.e. ln Ib
Ia

), and the

softness (i.e.
∑

i ln νi,a

νi,b
) of the final self-assembled state. At the same time each component

includes a correction which is linear with α and accounts for the stoichiometry of the assembly

reaction. Importantly, the stoichiometric-dependent term has a negative sign (i.e. it disfavors

association) in the translational and rotational contributions, because it accounts for the loss of

three translational and three rotational degrees of freedom per binding event, whereas it has a

positive sign (i.e. it favors association) in the vibrational contribution. Overall, Eq. 41 nicely

captures the molecular nature of the “High Relative Entropy” principle and can be used to

modulate and eventually control the propensity for self-assembly by playing with the chemistry of

the building blocks. Illustrative examples on the size, the shape, and the softness dependence of

self-assembly are provided below.

Size dependence. The first term of the r.h.s of Eq. 41 corresponds to the translational

contribution to the self-assembly entropy change. Its expression,

∆S
tr

b,a = R

[
3
2

lnα− (α− 1)S
tr

a

]
=

= R

[
3
2

lnα− (α− 1)
(

5
2

+ ln
[(2πmakT

h2

) 3
2 V

N

]) ]
, (42)

indicates that the difference in translational entropy between the initial disassembled (a) and the

final self-assembled (b) state depends on two contributions of opposite sign: the first is positive and

grows logarithmically with α (i.e. the size of the supramolecular aggregate); the second is negative

and grows linearly with α. According to the “High Relative Entropy” principle the latter disfavors

self-assembly and accounts for the loss of three translational degrees of freedom per binding event,

S
tr

a . As the translational entropy loss is largely dominant, Eq. 42 shows that supramolecular growth

into extended architectures is entropically very costly and may be possible only through strong

enthalpy/entropy (molecular recognition) or solvent-related entropy/entropy compensations; see

Fig. S3. However, it is interesting to note that the translational entropy loss is quite sensitive to

the molecular weight of the building blocks, ma. In fact, Fig. S3 shows that the entropic penalty

to form a cluster of 100 model particles decreases by 200 or 400 kcal/mol if ma is reduced by one

or two orders of magnitude. It follows that the molecular mass of the building blocks is a key
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parameter that should be carefully considered at the stage of chemical design for self-assembly.
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FIG. S3: Size dependence of the entropy change on self-assembly. (A) Supramolecular growth into extended

architectures: α and β are the stoichiometric coefficients of the generalized self-assembly reaction, αa 


βb; assuming β = 1, α corresponds to the size of the final supramolecular aggregate. The loss of three

translational degrees of freedom per binding event results in a large entropic cost of association, which

is linear with α. (B) Entropy change on self-assembly versus the size of the final architecture for three

building blocks of increasing molecular weight, ma. Entropy values were computed at 300 K; they are given

in kcal/mol. The data show that the translational entropy cost is strongly dependent on the size of the

building blocks.

Shape dependence. The second term of the r.h.s of Eq. 41 corresponds to the rotational

contribution to the self-assembly entropy change. Once more its expression,

∆S
rot

b,a = R

[
3
2

ln
Ib

Ia
− (α− 1) S

rot

a

]
=

= R

[
3
2

ln
Ib

Ia
− (α− 1)

(
3
2

+ ln
√

π

σa

(8π2IakT

h2

) 3
2

)]
, (43)

shows an interplay between two terms of opposite sign: a positive contribution that depends

logarithmically on the ratio of the moment of inertia of the assembled architecture over that of the

monomeric form and a negative contribution accounting for the loss of three rotational degrees of
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freedom per binding event, S
rot

a ; we note that the moments of inertia ratio corresponds to the change

in particles’ shape on self-assembly. Interestingly, Eq. 43 provides a quantitative way to access how

changes in particles symmetry upon association may affect the self-assembly probability. Starting

from a highly symmetric building block, such as C60 fullerene, three supramolecular architectures

with different shapes have been modeled by positioning an increasing number of particles on a

1D (linear), 2D (square), or 3D (cubic) regular lattice. The rotational entropy change on self-

assembly were then predicted for each architecture by using Eq. 43 for increasing α; see Fig.S4.

The data show that despite a sizeable change in the moment of inertia of the final architecture,

Ib, the shape-dependent contribution is negligible with respect to the rotational entropy loss,

which indeed governs the rotational contribution. In close analogy to the translational entropy

(see above), the rotational entropy loss on association appears to be so sensitive to changes in

shape of the building blocks, that the corresponding entropic cost to form a cluster of about 100

molecules may be reduced by 70 or 140 kcal/mol by decreasing by one or two orders of magnitude

the moment of inertia of monomeric particles, Ia. We conclude that the shape (or the symmetry)

of the building blocks is another key factor that should be optimized at the stage of chemical design

for self-assembly.

Softness dependence. The last term of the r.h.s of Eq. 41 corresponds to the vibrational

entropy contribution,

∆S
vib

b,a = R

[ κ∑
i

ln
(νi,a

νi,b

)
+ (α− 1)

6∑
i

S
vib

i,b

]
=

= R

[ κ∑
i

ln
(νi,a

νi,b

)
+ (α− 1)

6∑
i

ln
(
1 +

kT

hνi,b

)]
, (44)

which depends logarithmically on the inverse ratio of the vibrational frequencies of the final self-

assembled architecture over those of the initial monomeric particles. Interestingly and in sharp

contrast to the translational and rotational components, Eq. 44 includes a term linear with α with

a positive sign. The latter implies that self-assembly does not necessarily involve a vibrational

entropy loss, as the sign of the overall ∆S
vib

b,a will depend on the inverse ratio of the vibrational

frequencies. In fact, if νi,a

νi,b
is on average larger than zero (i.e. monomers are more rigid than the

self-assembled architecture), its logarithm will be positive and the vibrational entropy contribution

will favor self-assembly; if not, ∆S
vib

b,a will be negative and disfavor self-assembly. Interestingly,

Eq. 44 indicates that if we are able to arrange objects in space in such a way that the resulting

architecture is much “softer” than the individual monomers (i.e. it vibrates at lower frequencies),
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self-assembly may be entropically driven [6]. Thus, given a set of n self-assembly particles the

“softest” arrangement, i.e. the one that minimizes the overall vibrational frequencies, will have

the largest vibrational entropy stabilization. Clearly, the latter depends on the topology, and thus

the shape of the self-assembled architecture, and the nature of the interactions among particles

(i.e. their strength, directionality, short- or long-range character, etc.). In the limit of the above

approximations, Eq. 44 captures all these aspects and allows to translate them into chemical-

design rules. In fact, in the range of validity of the harmonic approximation one may determine the

particles’ vibrational frequencies before and after association by normal-mode analysis and estimate

the vibrational entropy change on self-assembly by using Eq. 44. To illustrate the dependence of

the vibrational entropy contribution on the topology of the self-assembled architecture, the size

of ∆S
vib

b,a was investigated for a series of two-dimensional discrete objects (i.e. molecular cycles)

as a function of α; see Fig. S5. The results are given in Table S1. The data show that the low-

frequency modes of the assembled particles (i.e. their global motions) strongly depend on the size

of the aggregate. Indeed, the lowest frequency mode decreases from 44 to 10 cm−1 on going from

the dimer to a 15-mer. Effectively, this corresponds to a non-negligible entropic stabilization of the

assembled state, which is quantified to be roughly 20 kcal/mol at room temperature for our model

system. Thus, playing with the topology of the resulting architecture, as well as the strength of

the interaction between particles appear as a promising route to control molecular self-assembly.

By extrapolating these results, we expect sizeable entropic stabilizations for large supramolecular

objects such as mesoscale soft-materials (see Section 2) or crystalline architectures (see Section 3).

nb 1 2 3 5 10 15

lowest ν [cm−1] / 44.3 38.3 36.8 19.4 9.8

∆S◦b,a [e.u.] / 5.06 15.4 25.4 52.9 63.5

T∆S◦b,a [kcal/mol] (@ 300K) / 1.5 4.6 7.6 15.9 19.1

TABLE S1: Softness dependence of the relative entropy for self-assembly at standard state evaluated for

the series cyclic aggregates depicted in Fig. S5.nb is the number of building blocks per object. Objects

were constructed assuming a regular polygonal topology, setting the inter-particle distance at 1.5 Å and

connecting particles by harmonic springs with a force constant of 1 kcal/mol/Å2. Frequencies were de-

termined by diagonalizing the Hessian Matrix obtained in the elastic network approximation [7]. Relative

vibrational entropy values for the various aggregates are given both in entropy units (e.u) and kcal/mol at

room temperature (i.e. 300 K).
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Entropy loss upon confinement at the solid-liquid interface

The translational partition function per molecule in n dimensions [1] is

ztr =
(

2πmkT

h2

)n/2

an (45)

with m the mass, k the Boltzmann constant, h the Plank constant, and an the generalized volume.

For N non-interacting molecules the system’s translational partition partition function is

Ztr =
zN
tr

N !
(46)

lnZtr = N
(
ln ztr − lnN + 1

)
By using the result of Eq. 29, the latter becomes

lnZtr = N

[
n

2
ln

(
2πmkT

h2

)
+ ln

ane

N

]
(47)

As the free energy is defined as

F = −kT lnZ, (48)

the translational free energy for a system of N molecules in n dimensions is

Fn
tr = −NkT

[
n

2
ln

(
2πmkT

h2

)
+ ln

ane

N

]
(49)

It follows that the free energy cost of confining N molecules in solution (i.e. 3D) to a layer at the

solid-liquid interface (i.e. 2D) equals

∆F3D→2D = F 2
tr − F 3

tr = NkT

[
1
2

ln
(

2πmkT

h2

)
+ ln a

]
(50)

which for a number of Avogadro (Na) molecules becomes

∆F3D→2D = RT

[
1
2

ln
(

2πmkT

h2

)
+ ln a

]
(51)

We note that the second term of the r.h.s. of Eq. 51 depends on the system’s volume (i.e. a3)

and thus on the initial concentration. At standard conditions, i.e. 1M concentration, the volume

is 10−3m3 such that a is 10−1 m. By using an arbitrary molecular mass of 500 gram/mol (i.e.

m = 8.30269e−25 Kg), a temperature of 300 K, k = 1.3806504e−23 J/K, h = 6.62606896e−34 J s,

Eq. 51 yields a free energy cost of 14.2 kcal/mol.
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FIG. S4: Shape dependence of the entropy change on self-assembly. (A) Dependence of the moment of inertia

of the assembled architecture (Ib) on the size and the shape.Three different architectures were analyzed; they

were modeled by positioning an increasing number of C60 fullerene particles onto a 1D (linear), 2D (square),

or 3D (cubic) regular lattices. The moment of inertia of each building block was Ia = 4.6 · 105amu3Å
6
. On

the right-hand side, the data show that Ib is strongly dependent on the shape of the molecular aggregate;

i.e. for an aggregate of about 100 molecules it increases by one or two orders of magnitude on going from the

cubic to the linear arrangement. (B) Rotational entropy loss on self-assembly. Relative entropy values at

300 K are given in kcal/mol. On the left-hand side, the rotational entropy contribution at room temperature

is reported for the three architectures as a function of α (i.e. the size of the supramolecular aggregate).

The data show that despite the strong shape-dependence of the moment of inertia (see above), the shape-

dependent entropic contribution is negligible with respect to the rotational entropy loss upon association.

On the right-hand side, the rotational entropy contribution for increasing α is given for three monomers of

varying Ia. The data show that the rotational entropy loss is highly sensitive to changes in the shape of the

building blocks, such that a reduction of Ia by one or two orders of magnitude corresponds to a decrease of

70 to 140 kcal/mol for a cluster of 100 molecules.
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FIG. S5: Softness dependence of the entropy change on self-assembly. The vibrational entropy change

of a series 2D discrete model architectures is analyzed as a function of α, i.e. the size of the molecular

aggregate. For simplicity, objects were modeled as regular polygons made by particles connected with

springs of equal strength. The distance between particles was chosen to be 1.5 Å and springs were modeled

using a harmonic strength of 1 kcal/mol/Å2, which roughly mimics the recognition strength provided by

non-covalent interactions such as H-bonding. On the right-hand side, it is shown that the vibrational entropy

stabilization for a 15-mer cycle at room temperature can be as large as 20 kcal/mol.
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