Electronic Supplementary Information

Catalysis by metallic nanoparticles in aqueous solution: Model reactions

Pablo Hervés,^a Moisés Pérez-Lorenzo,^a Luis M. Liz-Marzán,^{*a} Joachim Dzubiella^b, Yan Lu^b and Matthias Ballauff^{*b}

Table. S1. Catalytic activity of the metal nanoparticles for the reduction reaction of 4-

nitrophenol.

Sample	Carrier system	Metal	D ¹⁾ , (nm)	Temp, [°C]	$k_1^{2},$ (s ⁻¹ m ⁻² L)
513	Cationic SPB	Pd	2.4 ± 0.5	15	1.1
Mei 2007 ^[1]	PS-PNIPAM core- shell microgel	Pd	3.8 ± 0.6	15	0.11
Mei 2005 ^[2]	Cationic SPB	Pt	2.1 ± 0.4	15	0.56
Schrinner 2007 ^[3]	Cationic SPB	Au	1.3 ± 0.25	20	0.51
Lu 2007 ^[4]	Anionic SPB	Ag	3 ± 1.2	20	7.81×10 ⁻²
Lu 2005 ^[5]	PS-PNIPAM core- shell microgel	Ag	8.5 ± 1.5	20	5.2×10 ⁻²
Lu 2006 ^[6]	Highly branched polymer brush	Ag	7.5 ± 2	20	7.27×10 ⁻²
Lu 2010 ^[7]	PS-PNIPAM core- shell microgel	Au nanorods	width: 6.6 ± 0.3 ; length: 34.5 ± 5.2	20	0.14
		Au–Pt nanorods	width: 7.4 ± 0.8 ; length: 39.5 ± 6.5	20	0.21
Esumi 2004 ^[8]	PAMAM dendrimer	Pd	1.8 ± 0.42	15	3.07×10^{-3}
	PPI dendrimer	Pd	2 ± 0.41	15	7.76×10^{-1}
	PAMAM dendrimer	Pt	1.5 ± 0.35	15	3.60×10 ⁻³
	PPI dendrimer	Pt	1.5 ± 0.28	15	8.04×10^{-2}
Liu 2006 ^[9]	β-D-Glucosidase	Au	8.2 ± 2.3	25	4.10×10^{-2}
Wang 2007 ^[10]	PNIPAM-P4VP micelles	Au	3.3 ± 0.2	25	3.72×10 ⁻³
Zhang 2010	PNIPAAm	Ag	2.81 ± 0.62 3.45 ± 0.65		0.124 0.196
Murugadoss 2008 ^[12]	acetanlide	Au	5 ± 1.7	RT	0.6532
Zhang 2007	PDMAEMA	Au	4.2 ± 1.2		5.03×10 ⁻⁴
Panigrahi 2007 ^[14]	Citrate ligand	Au	20	15 25 45 60	1.13×10 ⁻³ 1.75×10 ⁻³ 3.83×10 ⁻³ 6.50 ×10 ⁻³
Murugadoss 2008 ^[15]	chitosan	Ag	3		1.50×10 ⁻¹
Harish 2009 [16]	PEDOT	Pd	1 - 9	25	2.22×10 ⁻²

Kuroda 2009 [17]	PMMA	Au	6.9 ± 5.5	25	4.8-5.3 ×10 ⁻¹
Behrens 2009 [18]	Protein	Pd	2.85 ± 0.5	22	0.048
Zhang 2009 ^[19]	TiO ₂	Ag	3	21	0.78
Yuan 2010 ^[20]	Organo-silica hybrid nanowires	Pt	3 ± 0.5	20	0.31
Signori 2010	PEI-E11 polymer PEI-E5 polymer	Ag	24.5 ± 4.1 19.5 ± 9.2	25 25	0.57 0.0081
Halder 2011 [22]	cluster	Pd	4-5		1.33×10 ⁻⁴ 2.5×10 ⁻⁴
Wu 2011 ^[23]	Collagen fiber	Au	5.2 ± 1.6	25	6.02×10 ⁻³
Bhandari 2011 [24]	Peptide	Pd	2.6 ± 0.5	20	1.67×10 ⁻²
Wu 2011 ^[25]	SiO ₂ nanorattle	Au	2.8 ± 0.7	25	5.49×10 ⁻³
			3.3 ± 0.6	25	4.78×10^{-3}
			4.5 ± 0.7	25	2.61×10^{-3}
Han 2010 ^[26]	PANI nanofiber	Au	2	RT	1.91×10 ⁻⁵
			10	RT	2.04×10^{-5}
Arora 2010 ^[27]	Al_2O_3	Pd	6 ± 0.5	25	1.36×10^{-1}
Yuan 2011 ^[28]	Poly(ionic liquid)	Au	2.1 ± 0.2	20	0.41
	brushes	Pd	2.5 ± 0.3	20	0.58

 $^{-1)}$ D: diameter of the metal nanoparticles;

²⁾ k_1 : rate constant normalized to the surface of the particles in the system (Eq.1).

- [2] Y. Mei, G. Sharma, Y. Lu, M. Drechsler, T. Irrgang, R. Kempe, M. Ballauff, *Langmuir*, 2005; **21**, 12229-12234.
- [3] M. Schrinner, F. Polzer, Y. Mei, Y. Lu, B. Haupt, M. Ballauff, A. Göldel, M. Drechsler, J. Preussner, U. Glatzel, *Macromol. Chem. Phys.*, 2007, 208, 1542-1547.
- [4] Y. Lu, Y. Mei, M. Schrinner, M. Ballauff, M. W. Möller, J. J. Breu, *Phys. Chem. C*, 2007, **111**, 7676-7681.
- [5] Y. Lu, Y. Mei, M. Ballauff, M. Drechsler, Angew. Chem. Int. Ed. Engl., 2006, 45, 813-816.
- [6] Y. Lu, Y. Mei, R. Walker, M. Ballauff, M. Drechsler, Polymer, 2006, 47, 4985-4995.
- [7] Y. Lu, J. Yuan, F. Polzer, M. Drechsler, J. Preussner, ACS Nano, 2010, 4, 7078-7086.
- [8] K. Esumi, R. Isono, T. Yoshimura, Langmuir, 2004, 20, 237-243.
- [9] J. C. Liu, G. W. Qin, P. Raveendran, Y. Ikushima, *Chem. Eur. J.*, 2006, **12**, 2131-2138.
- [10] Y. Wang, G. Wie, W. Zhang, X. Jiang, P. Zheng, L. Shi, A. Dong, J. Mol. Cat. A, 2007(1-2), 266, 233-238.
- [11] J. T. Zhang, G. Wei, T. F. Keller, H. Gallagher, C. Stotzel, F. A. Muller, M. Gottschaldt, U. S. Schubert, K. D. Jandt, *Macromol. Mater. Eng.*, 2010, 295, 1049–1057.
- [12] A. Murugadoss, A. Chattopadhyay, J. Phys. Chem. C, 2008, 112, 11265–11271.
- [13] M. M. Zhang, L. Liu, C. L. Wu, G. Q. Fu, H. Y. Zhao, B. He, *Polymer*, 2007, 48,1989-1997.

Y. Mei, Y. Lu, F. Polzer, M. Ballauff, M. Drechsler, *Chem. Mater.*, 2007, 19, 1062-1069.

- [14] S. Panigrahi, S. Basu, S. Praharaj, S. Pande, S. Jana, A. Pal, S. K. Ghosh, T. Pal, J. Phys. Chem. C, 2007, 111, 4596-4605.
- [15] A. Murugadoss, A. Chattopadhyay, *Nanotechnology*, 2008, **19**, 015603.
- [16] S. Harish, J. Mathiyarasu, K. L. N. Phani, V. Yegnaraman, Catal. Lett., 2009, 128, 197-202.
- [17] K. Kuroda, T. Ishida, M. Haruta, J. Mol. Cat. A, 2009, 298, 7-11.
- [18] S. Behrens, A. Heyman, R. Maul, S. Essig, S. Steigerwald, A. Quintilla, W. Wenzel, J. Bürck, O. Dgany, O. Shoseyov, Adv. Mater., 2009, 21, 3515-3519.
- [19] H. Zhang, X. Li, G. Chen, J. Mater. Chem., 2009, 19, 8223-8231.
- [20] J. Y. Yuan, F. Schacher, M. Drechsler, A. Hanisch, Y. Lu, M. Ballauff, A. Mueller, *Chem. Mater.*, 2010, 22, 2626-2634.
- [21] A. M. Signori, K. Santos, R. Eising, B. L. Albuquerque, F. C. Giacomelli, J. B. Domingos, *Langmuir*, 2010, 26, 17772-17779.
- [22] A. Halder, S. Patra, B. Viswanath, N. Munichandraiah, N. Ravishankar, *Nanoscale*, 2011, **3**, 725–730.
- [23] H. Wu, X. Huang, M. M. Gao, X. P. Liao, B. Shi, Green Chem. 2011, 13, 651–658.
- [24] R. Bhandari, M. R. Knecht, ACS Catal., 2011, 1, 89–98.
- [25] S. H. Wu, C. T. Tseng, Y. S. Lin, C. H. Lin, Y. Hung, C. Y. Mou, J. Mater. Chem., 2011, 21, 789–794.
- [26] J. Han, L. Y. Li, R. Guo, *Macromolecules*, 2010, **43**, 10636–10644.
- [27] S. Arora, P. Kapoor, M. L. Singla, React. Kinet. Mech. Catal., 2010, 99,157–165.
- [28] J. Y. Yuan, S. Wunder, F. Warmuth, Y. Lu, Polymer, 2012, 53, 43-49.