Supporting Information

Aqueous Biphasic Systems: A boost brought about by using ionic liquids

Mara G. Freire,^{*^a} Ana Filipa M. Cláudio,^b João M. M. Araújo,^a João A. P. Coutinho,^b Isabel M. Marrucho,^{a,b} José N. Canongia Lopes,^c Luís Paulo N. Rebelo^{*^a}

^aInstituto de Tecnologia Química e Biológica, ITQB2, Universidade Nova de Lisboa (www.itqb.unl.pt), Av. República, Apartado 127, 2780-901 Oeiras, Portugal
 ^bDepartamento de Química, CICECO (www.ciceco.ua.pt), Universidade de Aveiro, 3810-193 Aveiro, Portugal
 ^cCentro de Química Estrutural, Instituto Superior Técnico (cqe.ist.utl.pt), 1049-001, Lisboa, Portugal

*Corresponding author Tel: +351 21 4469 441; Fax: +351 21 4411 277; E-mail address: maragfreire@ua.pt; luis.rebelo@itqb.unl.pt.

Fig. S1 Ternary phase diagrams for ABS composed of chloride-based ionic liquids + K_2HPO_4/KH_2PO_4 at 298 K: \Box , $[C_4C_1pyr]Cl$; \blacklozenge , $[C_4C_1im]Cl$; \blacktriangle , $[C_4C_1pip]Cl$; ×, $[C_4-3-C_1py]Cl$.⁴⁵

Fig. S2 Ternary phase diagrams for ABS composed of $[C_nC_1im]Cl$ ionic liquids + K₃PO₄ at 298 K: \blacktriangle , $[C_1C_1im]Cl$; \blacklozenge , $[C_2C_1im]Cl$; +, $[C_4C_1im]Cl$; \circlearrowright , $[C_6C_1im]Cl$; -, $[C_7C_1im]Cl$; \Box , $[C_8C_1im]Cl$; ×, $[C_{10}C_1im]Cl$; •, $[C_{12}C_1im]Cl$; *, $[C_{14}C_1im]Cl$.¹⁸ (b) is an expansion of

Fig. S3 Ternary phase diagrams for ABS composed of $[C_2C_1im]$ -based ionic liquids + K_3PO_4 at 298.15 K: \blacklozenge , $[C_2C_1im][C_1SO_4]$; \blacksquare , $[C_2C_1im][C_4SO_4]$; \blacktriangle , $[C_2C_1im][C_6SO_4]$; \times , $[C_2C_1im][C_8SO_4]$.¹¹

Fig. S4 Ternary phase diagrams for ABS composed of imidazolium-based ionic liquids + K_3PO_4 at 298 K: \blacksquare , $[C_4C_1C_1im]Cl$; \blacktriangle , $[C_4C_1im]Cl$; \bullet , $[C_6C_1im]Cl$.¹⁸

Fig. S5 Ternary phase diagrams for ABS composed of pyridinium-chloride-based ionic liquids + K₂HPO₄/KH₂PO₄ at 298 K: ◆, [C₄-2-C₁py]Cl; ■, [C₄-3-C₁py]Cl; ▲, [C₄-4-C₁py]Cl.⁴⁵

Fig. S6 Ternary phase diagrams for ABS composed of [C₄C₁im][BF₄] + sodium-based salts at 298.15 K: ▲, NaCH₃CO₂; ■, Na₂C₄H₄O₆; ◆, Na₃C₆H₅O₇.²¹

Fig. S7 Ternary phase diagrams for ABS composed of $[C_4C_1im][BF_4]$ + amino acids at 298 K: •, L-proline; •, glycine; \blacktriangle , L-serine; \Box , D,L-lysine·HCl; •, L-lysine.^{14,58}

Fig. S8 Ternary phase diagrams for ABS composed of $[C_4C_1im][BF_4] + lysine at: <math>\blacksquare$, 298 K; \blacklozenge , 308.15 K; \blacktriangle , 318.15 K.⁵⁸

Fig. S9 Ternary phase diagrams for ABS composed of ionic liquids + sucrose at 298 K:
▲, [C₄C₁im][CF₃SO₃]; ◆, [aC₁im]Cl; ■, [aC₁im]Br; ●, [C₄C₁im][BF₄].^{17,51}

Fig. S10 Ternary phase diagrams for ABS composed of ionic liquids + glucose at 298 K:
[C₃C₁im][BF₄]; •, [C₄C₁im][BF₄].⁸

Fig. S11 Ternary phase diagrams for ABS composed of [C₄C₁im][CF₃SO₃] + dissacharides at 298 K: ◆, D-(+)-maltose; ▲, sucrose.¹⁷

Fig. S12 Ternary phase diagrams for ABS composed of $[C_4C_1im][CF_3SO_3] + polyols at 298 K: <math>\blacksquare$, D-maltitol; \bigstar , D-sorbitol; \diamondsuit , xylitol.¹⁷

Fig. S13 Ternary phase diagrams for ABS composed of ionic liquid + PPG 400 at 298 K: •, $[C_4C_1im]Br$; •, $[C_2C_1im]Br$; •, $[C_4C_1im]Cl$; •, $[aC_1im]Cl$; •, $[C_4C_1im][C_1CO_2]$.⁶³⁻⁶⁴

Fig. S14 Ternary phase diagrams for ABS composed of ionic liquid + PEG 2000 at 298 K: ■, [C₄C₁im]Cl; ○, [C₄C₁py]Cl; ●, [C₄C₁pyr]Cl; ▲, [C₄C₁pip]Cl; ◆, [P₄₄₄₄]Cl.⁶⁰

Fig. S15 Ternary phase diagrams for ABS composed of ionic liquid + PEG 2000 at 298 K: ◆, [C₄C₁im]Cl; ▲, [C₂C₁im]Cl; ●, [aC₁im]Cl; ■, [OHC₂C₁im]Cl.⁶⁰

Fig. S16 Ternary phase diagrams for ABS composed of [C₄C₁im]Cl + polymer at 298 K:
, PPG 400; ■, PEG 1000; ▲, PPG 1000.^{60,63}

Fig. S17 Ternary phase diagrams for ABS composed of [C₄C₁im]Cl + polymer at 298 K:
■, PEG 1000; ◆, PEG 2000; ▲, PEG 3400; ●, PEG 4000.⁶⁰

Fig. S18 Ternary phase diagrams for ABS composed of $[C_2C_1im]Cl + PEG 2000$ at: \blacktriangle , 323 K; \blacklozenge , 308 K; \blacksquare , 298 K.⁶⁰

Fig. S19 Ternary phase diagrams for ABS composed of $[C_2C_1im]Br + PPG 400 at: \square$, 298.15 K; \blacklozenge , 318.15 K.⁶⁴

Fig. S20 Phase diagrams for ABS composed of PEG 600 + Na₂SO₄ + 5 wt % ionic liquid at 298 K: \blacklozenge , no ionic liquid; \blacksquare , [im]Cl; \diamondsuit , [C₁im]Cl, \times , [C₂C₁im]Cl; \triangle , [C₄C₁im]Cl; \blacklozenge , [C₄C₁im]Cl; \blacklozenge , [C₄C₁C₁im]Cl; \circlearrowright ,

Fig. S21 Phase diagrams for ABS composed of PEG 600 + Na₂SO₄ + 5 wt % ionic liquid at 298 K: ◆, no ionic liquid; ■, [OHC₂C₁im]Cl; Δ, [aC₁im]Cl, ●, [C₇H₇C₁im]Cl.⁶¹

Fig. S22 Partition coefficients of caffeine and nicotine in different ABS at 298 K, obtained from the direct extraction of alkaloids from a synthetic biological sample – artificial human urine – and from simple aqueous phases.⁷⁴

Fig. S23 Comparison of the partition coefficients of penicillin in ABS composed of several imidazolium-based ionic liquids and NaH₂PO₄ or Na₂HPO₄.^{26,90}

Fig. S24 Partitioning coefficients of L-tryptophan between $[C_4C_1im][CF_3SO_3]$ - and carbohydrate-rich aqueous phases at 298 K. The effect of inorganic salt K₃PO₄ on the partition coefficient is also depicted to address the extraction efficiency of carbohydrates.^{17,43}

Fig. S25 Effect of the tie-line length (TLL) on the partitioning coefficients of amino acids for the $[C_4C_1im]Br + potassium citrate/citric acid + H_2O ABS at pH = 6, a pH close to the$ isoelectric point, at 298.15 K.⁹⁵

Fig. S26 Effect of the pH on the partitioning coefficients of tryptophan in the $[C_4C_1im]Br$ + potassium citrate/citric acid + H₂O ABS at 298.15 K.⁹⁵