Simulating the Properties of Small Pore Silica Zeolites Using Interatomic Potentials

Electronic Suplementary Information

Aldo F. Combariza, Diego A. Gomez and German Sastre

Instituto de Tecnologia Quimica, UPV-CSIC, Av/Los Naranjos s/n, 46022 Valencia, Spain

Contents

1	Force Fields, FFs, selected for the study.	3
2	8-ring zeolites	4
3	Force fields parameters	7
4	Structural properties of silica polymophs	9
5	Structural properties of low density polymorphs computed with different FFs selected in the study.5.1Si-IHW (ITQ-32)5.2Si-LTA (ITQ-29)5.3Si-ITE (ITQ-3)5.4Si-ITW (ITQ-12)5.5Si-SAS (SSZ-73)5.6Si-CHA	10 10 11 12 13 14
6	Mechanical and dielectric properties of α -Quartz	16
7	8-ring diameters obtained from MD simulations for the low density silica polymorphs.7.1Si-IHW (ITQ-32)7.2Si-LTA (ITQ-29)7.3Si-ITE (ITQ-3)7.4Si-ITW (ITQ-12)7.5Si-SAS (SSZ-73)7.6Si-CHA	17 17 19 21 23 25 27
8	Relative errors computed for the structural parameters.	29
9	Pore volume of selected low density silica polymorphs.	31

1 Force Fields, FFs, selected for the study.

Potentials in Table 1 are classified according to: a) parametrization method; b) data source for the parametrization; c) if polarizability is explicitly included via the shell model, the QEq or FQ models; d) if the atoms bears formal or partial charges. This work does not intend to show the details of the process of developing FFs, but rather to show their ability to reproduce and predict particular properties of several silica materials, so we refer the reader to the original references (See Table 1) for in depth information. A complete set of parameters is provided in ESI (section 2, Tables 2-4) for all of the models studied.

FF and Reference		Parametrization / Data Source	Polarizabilit
Sanders et al. [1]	SLC	Empirical $(\alpha - quartz)$	FC / SM
Schröeder and Sauer [2]	SS96	$Ab \ initio \ (SiO_4, AlO_4 - Tetrahedra)$	FC / SM
Sierka and Sauer [3]	S S 9 7	Ab initio (4-6 aluminosilicate rings)	FC / SM
Gale [4]	G ale	Empirical $(\alpha - quartz)$	FC / SM
Sastre and Corma [5]	SC1	Empirical $(\alpha - quartz)$	FC / SM
Pedone <i>et al.</i> [6]	PMM08	Periodic DFT	PC / SM
Jackson and Catlow [7]	JC	Empirical $(\alpha - quartz)$	FC / RI
Demontis et al. [8]	DSQFG	Empirical (Natrolite, Zeolites)	FC / RI
Jaramillo and Auerbach [9]	JA	$Ab \ initio \ / \ { m Empirical} \ (lpha - quartz)$	PC / RI
Auerbach et al. [10]	AHCM	$Ab \ initio \ / \ { m Empirical} \ (lpha - quartz)$	PC / RI
Van Beest <i>et al.</i> [11]	BKS	$Ab \ initio \ / \ { m Empirical} \ (lpha - quartz)$	PC / RI
Vessal [12]	Vessal	Empirical $(\alpha - quartz)$	FC / RI
Pedone et al. [13]	PMM06	Empirical (Different Crystal Structures)	PC / RI
Tsuneyuki et at. [14]	TTAM	Ab initio/(lpha-quartz)	PC / RI
Sastre and Corma [5]	SC2	Empirical $(\alpha - quartz)$	FC / MM
Smirnov and Bougeard [15]	\mathbf{SB}	-	MM

Table 1: FFs, references, parametrization method, polarizability method and applications.

2 8-ring zeolites

Table 2: List of the 64 zeotypes belonging to the Atlas of Zeolite Framework Types (as of May-2012, [16]) containing 8-rings as the largest window. The density has been calculated in the pure silica composition, and its corresponding energy with respect to quartz has been calculated according to a recent study [17]. A plot of density vs. energy is shown in Figure 1.

#	Code	Name	density (Si/1000 A^8)	Dim	Energy $(kJ/mol SiO_2)$
1	ABW	Li-A	17.6	1	11.52
2	ACO	ACP-1	16.5	3	18.68
3	AEI	AlPO-18	15.1	3	11.00
4	AEN	AlPO-EN3	20.1	2	9.83
5	AFN	AlPO-14	17.4	3	15.41
6	AFT	A1PO-52	15.1	3	10.90
7	AFX	SAPO-56	15.1	3	10.92
8	ANA	Analcime	19.2	3	8.29
9	APC	AlPO-C	17.7	2	13.64
10	APD	AlPO-D	18.0	2	7.36
11	ATN	MAPO-39	17.8	1	6.72
12	ATT	AlPO-12-TAMU	17.1	2	10.39
13	ATV	AlPO-25	18.9	1	5.19
14	AWO	AlPO-21	18.2	1	10.20
15	AWW	A1PO-22	16.9	1	8.89
16	BCT	Mg-BCTT	19.0	1	24.81
17	BIK	Bikitaite	18.7	1	2.73
18	BRE	Brewsterite	18.3	2	11.03
19	CAS	Cesium	18.8	1	3.41
20	CDO	CDS-1	18.1	2	12.01
21	CHA	Chabazite	15.1	3	10.85
22	DDR	Deca-dodecasil 3R	17.9	2	7.04
23	DFT	DAF-2	17.7	3	9.81
24	EAB	TMA-E	16.0	2	10.58
25	EDI	Edingtonite	16.3	3	22.94
26	EPI	Epistilbite	17.7	2	9.20
27	ERI	Erionite	16.1	3	11.83
28	ESV	ERS-7	17.7	1	8.60
29	GIS	Gismondine	16.4	3	9.80
30	GOO	Goosecreekite	19.0	3	18.00
31	IHW	ITQ-32	18.5	2	8.41
32	ITE	ITQ-3	15.7	2	9.55
33	ITW	ITQ-12	17.7	2	10.08
34	JBW	Na-J	18.8	1	10.70
35	KFI	Z K-5	15.0	3	11.33
36	LEV	Levyne	15.9	2	10.43
37	-LIT	Lithosite	19.2	0	
38	LTA	Linde type A	14.2	3	13.01
39	LTJ	Linde type J	18.5	2	10.49
40	LTN	Linde type N	17.0	0	9.36

Table 1. (Continuation)

#	Code	Name	density (Si/1000 A3)	Dim	Energy $(kJ/mol SiO_2)$
41	MER	Merlinoite	16.4	3	10.75
42	MON	Montesommaite	17.6	2	10.14
43	MTF	MC M-35	20.7	1	6.71
43	NPT	Oxonitridophosphate-2	13.5	3	43.94
45	NSI	Nu - 6(2)	18.8	2	15.90
46	OWE	UiO -28	17.1	2	13.75
47	\mathbf{PAU}	Paulingite	15.9	3	10.92
48	PHI	Phillipsite	16.4	3	10.36
49	RHO	\mathbf{Rho}	14.5	3	12.13
50	\mathbf{RTE}	RUB-3	17.2	1	7.26
51	RTH	RUB-13	16.1	2	9.45
52	RWR	RUB-24	19.2	1	13.10
53	SAS	STA-6	14.9	1	9.71
54	SAT	STA-2	16.4	3	11.46
55	SAV	Mg-STA-7	14.6	3	11.61
56	SBN	UCSB-9	16.1	3	27.56
57	SIV	SIZ-7	16.4	3	10.10
58	THO	Thomsonite	15.7	3	22.02
59	TSC	Tschörtnerite	13.2	3	13.72
60	UEI	Mu-18	17.5	2	10.26
61	UFI	$\rm UZM$ -5	15.2	2	11.49
62	VNI	VPI-9	17.6	3	21.28
63	YUG	Yugawaralite	18.0	2	7.13
64	ZON	ZAPO-M1	18.0	2	13.37

Figure 1: Plot of energy (with respect to quartz) versus density corresponding to the pure silica zeolites indicated in Table 2. Structures below 15 kJ/mol SiO₂ are considered to be stable as pure silica composition according to a previous study [17]. 53 out of 64 structures are below such threshold.

3 Force fields parameters

	BKS	TTAM	AHCM	JA	Vessal	JC	PM M0
Charges							
Sic[e]	+2.4	+2.4	+2.4	+2.05	+4.0	+4.0	+2.4
Q_c [e]	-1.2	-1.2	-1.2	-1.025	-2.0	-2.0	-1.2
Buckingham							
	18003.7572	10703.0000	17796.1	17796.1	1005.1563	1584.167	
	1388.7730	1753.8000	1305.9	1305.9	4978496.9	22764.0	
	100011100	8 61588E+8	100010	100010	101010010	1110110	
es: 0 [Å]	0.205205	0.208510133	0.2049	0.2049	0.3277	0.32962	
PS1=0	0.362319	0.353805711	0.3594	0.3594	0.149	0.149	
		0.0657					
$C_{Si} = Si^{-Si}$	133.5381	70.6100	135.4	135.4	25.0	52.64511	
$C_{O} \cap [eVÅ^6]$	175.0000	214.3700	196.1	196.1	52.12	27.88	
C_{Si-Si} [eVÅ ⁶]		23.2603					
Norse							
D_e [eV]							0.340554
$a_{si=0}[\mathbf{A}^{-2}]$							2.006700
$r_{Si=0}$ [Å]							2.100000
D_e [eV]							0.042398
a_{O-O} [Å ⁻²]							1.379316
r_{O-O} [Å]							3.61870:
D_e [eV]							
a_{Si-Si} [Å ⁻²]							
r _{Si-Si} [Å]							
Buckingham 4							
${}_{1}[Si - O/O - O][Å]$					1.5 / 2.9		
$_{2}[Si - O/O - O][Å]$					2.5 / 3.6		
${}_{3}[Si - O/O - O][A]$					3.5 / 4.2		
$_{4}[Si - O/O - O][Å]$					7.6 / 7.6		
Vessal							
$G_{O-[Si]-O}[eV/rad^2]$			729.0189	729.0189	729.0189		
$ ho_1$ [Å]			0.3277	0.3277	0.3277		
$ ho_2$ [Å]			0.3277	0.3277	0.3277		
θ_0 [rad]			109.47	109.47	109.47		
Harmonic							
$Si - O[ev/Å^2]$							
$ ho_{Si-O}$ [Å]							
Harmonic Three							
K_{O-Si-O} [eV/rad ²]						4.5815	
θ_0						109.47	

	SL C	5596	5597	Gale	SC1	PMM08
Charges						
<i>Si_c</i> [e]	+4.0	+4.0	+4.0	+4.0	+4.0	+2.722600
<i>O</i> _ <i>c</i> [e]	+0.8482	+1.06237	+1.22858	+0.86902	+0.86902	+1.919810
<i>O</i> _{<i>s</i>} [e]	-2.8482	-3.06237	-3.22858	-2.86092	-2.86092	-3.281110
Shell - Spring						
$O_c \cdot O_s [eV/Å^2]$	74.9204	112.7629	122.47853	79.074	74.92	256.71027
Buckingham						
A_{Si-O} [eV]	1283.9073	1550.950	1612.45920	1277.514	1824.2944	8166.2632
$A_{O-O} [{\rm eV}]$	22764.000			22764.00	2046.0422	15039.909
$ ho_{Si-O}$ [Å]	0.32052	0.30017	0.29955	0.32052	0.289798	0.193884
ρ_{O-O} [Å]	0.14900			0.14900	0.134015	0.227708
C_{Si-O} [eVÅ 6]	10.6616			5.9062	0.00	0.00
C_{O-O} [eV Å 6]	27.879			27.879	14.027	0.00
Urey Bradley						
K_{O-Si-O} [eV/Å ²]				2.30273		
r_0 [Å]				2.43352		
Harmonic Three						
K_{O-Si-O} [eV/rad ²]	2.097	0.18397	0.144703		2.0972	
θ_0	109.47	109.47	109.47		109.47	
Vessal						
$K_{Si-[O]-Si}[eV/rad^2]$					729.0189	
$ ho_1$ [Å]					0.3277	
$ ho_2$ [Å]					0.3277	
$\theta_0[\mathbf{rad}]$					109.47	

Table 4: Shell Model FF Parameters.

	DS QFG	SC2	$\mathbf{S} \mathbf{B}$
Charges			
Si_{c} [e]	+4.0	+0.0	
<i>O</i> _ <i>c</i> [e]	-2.0	+4.24	
<i>O</i> _{<i>S</i>} [e]		-4.24	
Shell - Spring			
O_c - O_s [eV/Å ²]		74.92	
Harmonic Two			
K_{Si-O} [eV/Å ²]	21.68	58.9576	25.90
r_0^{Si-O} [Å]	1.605	1.605	1.61
Urey Bradley			
K_{O-Si-O} [eV/Å ²]	4.4666		
r_0 [Å]	2.618		
Harmonic Three			
K_{O-Si-O} [eV/rad ²]		6.00	5.99
θ_{O-Si-O}		109.47	109.47
$K_{Si-O-Si}$ [eV/rad ²]			0.79
$\theta_{Si-O-Si}$			142
Vessal			
$K_{Si-[O]-Si}[eV/rad^2]$		4633.8	
$ ho_1$ [Å]		0.400	
$ ho_2$ [Å]		0.400	
$\theta_0[\mathbf{rad}]$		145.00	

Table 5: Molecular Mechanics FF Parameters.

4 Structural properties of silica polymophs

Table 6: α,β -Quartz and Coesite: lattice parameters and cell volume.

Structure	a [Å]	ь [Å]	c [Å]	$lpha / eta / \gamma$ [rad]	Vol [Å ³]
α -Quartz [18]	4.92	4.91	5.40	90/90/120	113.1
β -Quartz[18, 19]	5.00	5.00	5.46	90/90/120	118.0
Coesite[20]	7.147	12.383	7.19	90/120.4/90	547.8

Table 7: Pure silica zeolites: lattice parameters and cell volume.

Table 7. 1 ute sinca zeontes. lattice parameters and cen volume									
Zeolite	a [Å]	ь [Å]	c [Å]	$\alpha/\beta/\gamma$ [Deg]	Vol [Å ³]	Channel Dim.			
(ITQ-29) LTA[21]	11.92	11.92	11.92	90	1693.2	$^{3}\mathrm{D}$			
(ITQ-32) IHW[22]	13.70	24.02	18.20	90	6064.6	$2\mathrm{D}$			
(ITQ-3) ITE[23]	20.75	9.80	20.01	90	4071.1	2D (1D)			
(SSZ-73) $SAS[24]$	14.10	14.10	10.18	90	2026.5	$^{3}\mathrm{D}$			
Si-CHA[25]	13.67	13.67	14.76	90/120/90	2391.5	$^{3}\mathrm{D}$			
(ITQ-12) ITW[26]	10.33	15.01	8.86	90/105.3/90	1353.9	2D(1D)			

5 Structural properties of low density polymorphs computed with different FFs selected in the study.

5.1 Si-IHW (ITQ-32)

Potential	a [Å]	ь [Å]	c [Å]	$\alpha = \beta = \gamma$ [Deg]	$Si = O[\Lambda]$	$S_i - S_i$ [Å]	$\sqrt{Si - O - Si}$	$\sqrt{0-Si-0}$
1 otentiai	սլոյ	նլոյ	ելոյ	$\alpha = \beta = \gamma [\mathbf{Deg}]$			251 0 51	20 51 0
\mathbf{SLC}	13.70	24.03	18.17	90	1.598	3.091	152	109.46
SS96	13.94	24.36	18.50	90	1.610	3.140	156	109.46
SS97	14.14	24.65	18.75	90	1.622	3.181	160	109.46
Gale	13.76	24.10	18.26	90	1.601	3.104	153	109.46
SC1	13.80	24.23	18.31	90	1.615	3.116	151	109.46
$\mathbf{SC2}$	13.75	24.10	18.33	90	1.610	3.106	151	109.46
PMM08	13.82	24.29	18.26	90	1.628	3.120	148	109.46
\mathbf{JC}	14.15	24.70	18.71	90	1.605	3.181	167	109.42
DSQFG	13.76	23.91	18.39	90	1.604	3.104	154	109.47
JA	14.04	23.17	13.10	90	-	-	-	-
AHCM	13.21	23.47	16.77	90	1.549	2.982	151	109.35
BKS	13.97	24.42	18.52	90	1.605	3.149	159	109.43
Vessal	14.21	24.66	18.69	90	1.608	3.187	166	109.42
PMM06	14.01	24.47	18.59	90	1.608	3.158	160	109.42
TTAM	14.30	24.99	18.95	90	1.641	3.222	160	109.42
\mathbf{BS}	13.56	23.82	17.94	90	1.610	3.063	145	109.47
IZA	13.74	24.07	18.33	90	1.610	3.106	150.809	109.465
Exp[22]	13.70	24.02	18.20	90	1.595	-	-	109.478

 Table 8: Si-IHW (ITQ-32): Lattice Parameters

5.2 Si-LTA (ITQ-29)

 $\alpha = \beta = \gamma \, \left[\mathbf{Deg} \right]$ Potential a=b=c [Å] Si - O [Å] Si - Si [Å] $\angle Si - O - Si$ $\angle O - Si - O$ SLC 11.8590 1.5993.091150109.47SS9612.00901.6113.131153109.50SS9712.0390 1.6283.140150109.50Gale 11.8890 1.6023.102151109.50SC111.9590 1.6153.118150109.47 $\mathbf{SC2}$ 11.87901.6053.093 149109.47PMM08 12.02901.6283.137150109.47 \mathbf{JC} 12.12901.6073.167161109.23DSQFG 11.9190 1.6043.103 151109.5012.05903.148156109.30 $\mathbf{J}\mathbf{A}$ 1.611AHCM 3.050158109.30 11.67901.554BKS 9012.081.6093.156158109.30Vessal 12.1190 1.6103.172161109.20PMM06 11.3490 2.959163109.191.499TTAM 3.230 12.3690 1.645159109.31 \mathbf{BS} 90 109.4711.891.6103.098149IZA 90 1.6103.105150109.47111.92Exp [21] 11.87901.600-153109.40

Table 9: Si-LTA (ITQ-29): Lattice Parameters

5.3 Si-ITE (ITQ-3)

Potential a [Å] b [Å] c [Å] $\alpha=\beta=\gamma~[{\rm Deg}]$ Si - O [Å] Si - Si [Å] $\angle Si - O - Si$ $\angle O - Si - O$ \mathbf{SLC} 20.639.7319.56901.6003.087150109.47SS9620.949.8819.7990 1.6123.130153109.47 SS9721.2310.0019.9890 1.6243.167155109.469.77Gale 20.7119.6090 1.6023.099151109.47 $\mathbf{SC1}$ 20.799.8219.7590 1.6163.113149109.47 $\mathbf{SC2}$ 20.751.6289.8090 149109.4720.013.128PMM08 20.659.8019.8790 1.6293.110147109.47 \mathbf{JC} 21.379.9919.9790 1.6063.171162109.31DSQFG 20.4490 1.6043.083 109.47 9.6619.73149 $\mathbf{J}\mathbf{A}$ 19.939.7190 1.6083.06919.74147109.39AHCM 19.841.5529.5819.3890 3.027155109.39BKS 20.979.9519.93901.6083.151157109.39Vessal 21.2710.0119.9390 1.6093.175161109.30PMM06 21.041.611158109.389.9719.97903.160TTAM 21.4910.18 20.3890 1.6443.225158109.38 \mathbf{BS} 20.269.5119.57901.613.054144109.47IZA 20.7590 1.6281499.8020.013.128109.471Exp [23] 20.629.7219.6290 1.60109.4

Table 10: Si-ITE (ITQ-3): Lattice Parameters

5.4 Si-ITW (ITQ-12)

Table 11: Si-ITW (ITQ-12): Lattice Parameters

						- 	a. a. 181		
Potential	a [A]	b [A]	c [A]	$\alpha = \gamma [\text{Deg}]$	β [Deg]	$Si - O[\mathbf{A}]$	Si - Si [A]	$\angle Si - O - Si$	$\angle O - Si - O$
\mathbf{SLC}	10.30	15.05	8.86	90	105.24	1.599	3.089	151	109.47
SS96	10.41	15.27	8.99	90	105.20	1.612	3.131	154	109.46
SS97	10.50	15.47	9.10	90	105.13	1.624	3.167	156	109.45
Gale	10.32	15.11	8.89	90	105.16	1.602	3.101	152	109.47
$\mathbf{SC1}$	10.40	15.17	8.94	90	105.28	1.615	3.116	151	109.47
$\mathbf{SC2}$	10.45	15.03	8.95	90	105.64	1.610	3.099	150	109.47
PMM08	10.56	15.20	9.03	90	105.66	1.628	3.135	150	109.47
\mathbf{JC}	10.37	15.58	9.08	90	104.87	1.606	3.167	162	109.31
DSQFG	10.40	14.99	8.94	90	105.65	1.604	3.090	150	109.47
JA	9.57	9.48	9.81	90	96.65	1.646	3.126	147	118.05
AHCM	10.18	15.48	7.92	90	105.63	1.551	3.019	157	109.39
BKS	10.40	15.55	8.90	90	104.78	1.607	3.150	159	109.39
Vessal	10.38	15.55	9.08	90	104.81	1.610	3.173	162	109.31
PMM06	10.45	15.54	8.94	90	104.97	1.610	3.159	159	109.38
TTAM	10.63	15.92	9.10	90	104.75	1.643	3.223	159	109.38
\mathbf{BS}	10.48	14.90	8.90	90	105.63	1.61	3.081	148	109.47
IZA	10.45	15.03	8.95	90	105.64	1.610	3.10	150	109.471
Exp [27]	10.34	15.02	8.86	90	105.36	1.61	-	147	109.5

5.5 Si-SAS (SSZ-73)

Table 12: Si-SAS (SSZ-73): Lattice Parameters

Potential	a [Å]	c [Å]	$\alpha = \beta = \gamma \ [\mathbf{Deg}]$	Si - O [Å]	Si - Si [Å]	$\angle Si - O - Si$	$\angle O - Si - O$
SLC	14.03	10.21	90	1.599	3.089	150	109.476
SS96	14.23	10.34	90	1.611	3.131	153	109.466
SS97	14.42	10.43	90	1.624	3.167	154	109.5
Gale	14.08	10.24	90	1.602	3.100	151	109.474
SC1	14.16	10.31	90	1.615	3.117	150	109.476
SC2	14.07	10.30	90	1.605	3.104	151	109.470
PMM08	14.20	10.47	90	1.627	3.145	151	109.471
\mathbf{JC}	14.47	10.38	90	1.607	3.167	161	109.359
DSQFG	14.17	10.26	90	1.604	3.112	152	109.471
JA	14.64	9.92	90	1.610	3.140	158	109.393
AHCM	13.98	9.87	90	1.553	3.044	158	109.391
BKS	14.43	10.28	90	1.608	3.152	157	109.396
Vessal	14.47	10.36	90	1.610	3.172	160	109.318
PMM06	13.56	9.668	90	1.499	2.962	163	109.381
TTAM	14.76	10.51	90	1.644	3.225	158	109.383
\mathbf{BS}	14.12	10.32	90	1.61	3.113	150.55	109.45
IZA	14.35	10.40	90	1.627	3.152	151	109.471
Exp [24]	14.10	10.19	90	1.602	-	150	109.5

5.6 Si-CHA

 Table 13: Si-CHA: Lattice Parameters

			<u>1able 13:</u>	<u>SI-CHA</u>	Lattice Par	<u>rameters</u>		
Potential	a [A]	c [A]	$\alpha = \beta [\text{Deg}]$	$\gamma [\text{Deg}]$	$Si - O[\mathbf{A}]$	Si - Si [A]	$\angle Si - O - Si$	$\angle O - Si - O$
\mathbf{SLC}	13.55	14.58	90	120	1.602	3.077	148	109.47
SS96	13.71	14.84	90	120	1.613	3.119	150	109.47
SS97	13.85	15.04	90	120	1.625	3.154	152	109.46
Gale	13.60	14.61	90	120	1.605	3.089	149	109.47
SC1	13.67	14.77	90	120	1.619	3.109	147	109.47
SC2	13.62	14.71	90	120	1.605	3.091	149	109.47
PMM08	13.83	14.81	90	120	1.627	3.137	149	109.47
\mathbf{JC}	13.87	15.06	90	120	1.608	3.159	158	109.34
DSQFG	13.61	14.81	90	120	1.604	3.095	149	109.47
JA	13.48	15.45	90	120	1.610	3.111	152	109.39
AHCM	13.22	6.19	90	120	1.665	3.094	141	105.31
BKS	13.85	14.82	90	120	1.609	3.140	153	109.39
Vessal	13.85	15.09	90	120	1.611	3.163	158	109.30
PMM06	12.98	14.09	90	120	1.499	2.953	160	109.36
TTAM	14.184	15.128	90	120	1.645	3.214	155	109.37
BS	13.66	14.76	90	120	1.61	3.099	148.53	109.47
IZA	13.67	14.77	90	120	1.610	3.103	149	109.471
Exp [25]	13.53	14.75	90	120	1.603	-	148	109.47

6 Mechanical and dielectric properties of α -Quartz

Potential	Bulk Modulus (GPa)		Elas	stic Con	stants [0		
	K	\mathbf{C}_{11}	\mathbf{C}_{33}	\mathbf{C}_{44}	\mathbf{C}_{66}	\mathbf{C}_{14}	\mathbf{C}_{13}
SLC	44.41	94.66	112.57	49.68	39.94	-15.79	17.89
SS96	42.01	84.56	96.34	41.07	36.53	-13.70	23.94
SS97	45.35	75.89	105.64	38.14	26.10	-7.85	28.99
Gale	44.96	97.00	105.23	47.99	40.52	-16.28	18.60
SC1	43.37	91.80	113.21	48.57	38.26	-17.20	16.71
SC2	38.25	103.35	84.85	54.66	39.80	-16.97	3.90
PMM08	34.62	72.88	97.59	46.86	29.97	-13.34	11.77
\mathbf{JC}	121.11	202.32	212.93	63.07	67.99	0.0001	86.27
DSQFG	0.000	31.71	28.13	32.92	13.62	-21.17	-22.56
JA	37.99	62.79	156.10	17.43	20.43	15.56	15.27
AHCM	43.54	69.27	176.32	36.30	23.04	1.658	24.65
BKS	40.10	90.55	107.07	50.27	41.22	-17.66	15.24
Vessal	199.16	318.10	301.87	78.61	99.49	-0.0001	154.46
PMM06	37.46	88.41	103.54	49.31	40.38	-18.33	11.03
TTAM	33.49	71.34	93.98	40.53	30.73	-13.76	12.73
BS	17.08	70.41	62.28	47.98	27.56	-17.04	-17.04
Exp [28]	38,98	86.83	105.98	58.26	39.87	-18.06	11.93

Table 14: α -Quartz Calculated and Experimental Mechanic Properties.

Table 15: α -Quartz Calculated and Experimental Dielectric Properties.

$\operatorname{Potential}$	Static Dielectric	High Frequency
	Constant ϵ^0_{11} - ϵ^0_{33}	Dielectric Constant ϵ_{11}^∞ - ϵ_{33}^∞
SLC	4.58 - 4.88	2.07 - 2.09
SS96	4.07 - 4.42	1.75 - 1.76
SS97	4.47 - 4.65	1.84 - 1.86
Gale	4.81 - 5.29	1.98 - 1.99
SC1	3.32 - 3.53	1.91 - 1.93
$\mathbf{SC2}$	4.14 - 4.26	3.09 - 3.21
PMM08	2.78 - 2.84	1.423 - 1.425
\mathbf{JC}	3.90 - 4.07	
DSQFG	1.00 - 1.00	
JA	2.33 - 2.34	
AHCM	2.31 - 2.36	
BKS	1.95 - 1.99	
\mathbf{Vessal}	3.68 - 3.83	
PMM06	2.25 - 2.32	<u> </u>
TTAM	2.11 - 2.17	<u> </u>
BS		
Exp[29]	4.51 - 4.60	2.4 - 2.4

7 8-ring diameters obtained from MD simulations for the low density silica polymorphs.

7.1 Si-IHW (ITQ-32)

Table 16: 8-ring diameters for Si-IHW, computed as the radial distribution functions of the O-O inter-atomic distances along the MD simulations performed at 300 K, within the NVE ensemble.

Potential	D1 [Å]	D2 [Å]
BKS	$3.90{\pm}0.18$	$4.30 {\pm} 0.20$
PMM06	$3.93{\pm}0.18$	$4.27 {\pm} 0.20$
TTAM	$4.04{\pm}0.21$	$4.49 {\pm} 0.22$
\mathbf{BS}	$3.38{\pm}0.22$	$4.35{\pm}0.25$
IZA	3.5	4.3

Figure 2: Si-IHW rings

Figure 3: 8-ring diameters computed as the radial distribution function of the O-O distance, computed via MD simulations for Si-IHW.

7.2 Si-LTA (ITQ-29)

Table 17: Window Diameters for Si-LTA, computed as the radial distribution functions of the O-O inter-atomic distances along the MD simulations performed at 300 K, within the NVE ensemble.

Potential	D1 [Å]
BKS	$4.10{\pm}0.17$
$\mathbf{PMM06}$	$4.09{\pm}0.15$
TTAM	$4.24{\pm}0.19$
BS	$4.13{\pm}0.17$
IZA	4.2

Figure 5: 8-ring diameters computed as the radial distribution function of the O-O distance, computed via MD simulations for Si-LTA.

7.3 Si-ITE (ITQ-3)

Table 18: Window Diameters for Si-ITE, computed as the radial distribution functions of the O-O inter-atomic distances along the MD simulations performed at 300 K, within the NVE ensemble.

Potential	D1 [Å]	D2 [Å]		
BKS	$4.19{\pm}0.17$	$4.35{\pm}0.16$		
PMM06	$4.22{\pm}0.18$	$4.36{\pm}0.17$		
TTAM	$4.34{\pm}0.17$	$4.53{\pm}0.19$		
\mathbf{BS}	$4.10{\pm}0.24$	$4.32{\pm}0.35$		
IZA	3.8	4.3		

Figure 7: 8-ring diameters computed as the radial distribution function of the O-O distance, computed via MD simulations for Si-ITE.

7.4 Si-ITW (ITQ-12)

Table 19: Window Diameters for Si-ITW, computed as the radial distribution functions of the O-O inter-atomic distances along the MD simulations performed at 300 K, within the NVE ensemble.

$\operatorname{Potential}$	D1 [Å]	D2 [Å]
BKS	$3.78 {\pm} 0.23$	$4.26 {\pm} 0.23$
PMM06	$3.83 {\pm} 0.19$	$4.29 {\pm} 0.20$
TTAM	$4.08 {\pm} 0.22$	$4.76 {\pm} 0.22$
\mathbf{BS}	$4.08{\pm}0.20$	$4.12 {\pm} 0.24$
IZA	3.9	4.2

Figure 9: 8-ring diameters computed as the radial distribution function of the O-O distance, computed via MD simulations for Si-ITW.

7.5 Si-SAS (SSZ-73)

Table 20: Window Diameters for Si-SAS, computed as the radial distribution functions of the O-O inter-atomic distances along the MD simulations performed at 300 K, within the NVE ensemble.

Potential	D1 [Å]
BKS	$4.23{\pm}0.16$
PMM06	$4.22{\pm}0.16$
TTAM	$4.40{\pm}0.17$
BS	$4.19{\pm}0.17$
IZA	4.2

Figure 11: 8-ring diameters computed as the radial distribution function of the O-O distance, computed via MD simulations for Si-SAS.

7.6 Si-CHA

Table 21: Window Diameters for Si-CHA, computed as the radial distribution functions of the O-O inter-atomic distances along the MD simulations performed at 300 K, within the NVE ensemble.

Potential	D1 [Å]
BKS	$3.77 {\pm} 0.20$
PMM06	$3.89{\pm}0.17$
TTAM	$3.92{\pm}0.21$
BS	$3.65{\pm}0.18$
IZA	3.8

Figure 13: 8-ring diameters computed as the radial distribution function of the O-O distance, computed via MD simulations for Si-CHA.

8 Relative errors computed for the structural parameters.

Figure 14: Relative error (%) computed for structural parameters of the pure silica polymorphs, α -quartz, β -quartz and coesite, calculated with the selected FFs.

Figure 15: Relative error (%) computed for structural parameters of pure silica zeolites CHA, LTA, SAS, IHW, ITE and ITW, calculated with the selected FFs.

9 Pore volume of selected low density silica polymorphs.

As additional test, in order to compare the performance of the four selected rigid ions FFs, the pore volume of the minimized structures were computed and compared with the values estimated by nitrogen or argon adsorption experiments, where available. The pore volumes were estimated with the PLATON code [30] employing the Lennard-Jones sigma value of a nitrogen molecule (3.68Å) and the van der Waals diameter of the Argon atom (3.84 Å) according to previous works [31].

	IZA(Exp.)		BKS		PMM06		TTAM		BS	
	N ₂	Ar	N_2	Ar	N_2	Ar	N_2	Ar	N_2	Ar
Si-IHW	$0.13 \ (0.16[22], \ 0.17[32])$	0.12	0.14	0.14	0.14	0.14	0.16	0.16	0.11	0.10
Si-LTA	$0.31 \ (0.32[33])$	$0.32 \ (0.24 [21])$	0.35	0.33	0.35	0.34	0.37	0.37	0.32	0.32
Si-ITE	$0.23 \ (0.23[34])$	0.23	0.24	0.24	0.25	0.24	0.27	0.27	0.20	0.20
Si-ITW	0.13	$0.10 \ (0.15[35])$	0.13	0.08	0.14	0.08	0.15	0.15	0.13	0.07
Si-SAS	$0.23 \ (0.25 [21])$	0.23	0.26	0.26	0.26	0.26	0.29	0.28	0.23	0.24
Si-CHA	$0.26\ (0.30[34])$	0.26	0.28	0.27	0.29	0.27	0.32	0.31	0.26	0.26

Table 22: Experimental and calculated Pore Volumes (cm^3/g) .

References

- [1] M. J. Sanders, M. Leslie, and C. R. A. Catlow, J. Chem. Soc., Chem. Comm., 1984, pp. 1271–1273.
- [2] K. P. Schröder and J. Sauer, J. Phys. Chem., 1996, 100(26), 11043-11049.
- [3] M. Sierka and J. Sauer, Faraday Discuss., 1997, 106, 41–62.
- [4] J. D. Gale, J. Phys. Chem. B, 1998, **102**, 5423–5431.
- [5] G. Sastre and A. Corma, J. Phys. Chem. B, 2006, 110, 17949–17959,
- [6] A. Pedone, G. Malavasi, M. C. Menziani, U. Segre, F. Musso, M. Corno, B. Civarelli, and P. Ugliengo, *Chem. Mater.*, 2008, 20(7), 2522.
- [7] R. A. Jackson and C. R. A. Catlow, Mol. Simulat., 1988, 1, 207–224.
- [8] P. Demontis, G. B. Suffritti, A. Alberti, S. Quartieri, E. S. Fois, and A. Gamba, *Gazz. Chim. Ital.*, 1986, **116**(8), 459–466.
- [9] E. Jaramillo and S. M. Auerbach, J. Phys. Chem. B, 1999, 103, 9589–9594.
- [10] S. M. Auerbach, N. J. Henson, A. K. Cheetham, and H. I. Metiu, J. Phys. Chem., 1995, 99, 10600-10608.
- [11] B. W. H. van Beest, G. J. Kramer, and R. A. van Santen, Phys. Rev. Lett., 1990, 64(16), 1955– 1958.
- [12] B. Vessal, J. Non-Cryst. Solids., 1994, 177, 103–124.
- [13] A. Pedone, G. Malavasi, M. C. Menziani, A. N. Cormack, and U. Segre, J. Phys. Chem. B, 2006, 110(24), 11780–11795.
- [14] S. Tsuneyuki, M. Tsukada, H. Aoki, and Y. Matsui, Phys. Rev. Lett., 1988, 61(7), 869-872.

- [15] K. S. Smirnov and D. Bougeard, J. Raman Spectrosc., 1993, 24, 255.
- [16] C. Baerlocher, L. B. McCusker, and D. H. Olson, Atlas of Zeolite Framework Types. 6th revised edition, Elsevier, 2007. Also in www.iza-sructure.org.
- [17] Y. G. Bushuev and G. Sastre, J. Phys. Chem. C, 2010, 114(45), 19157-19168.
- [18] A. F. Wright and M. S. Lehmann, J. Solid State Chem., 1981, 36, 371-380.
- [19] R. W. G. Wyckoff, Crystal Structures, Interscience, New York, 1974.
- [20] J. R. Smyth, J. V. Smith, G. Artioli, and A. Kvick, J. Phys. Chem., 1987, 91, 988–992.
- [21] A. Corma, F. Rey, J. Rius, M. J. Sabater, and S. Valencia, Nature, 2004, 431, 287–290.
- [22] A. Cantin, A. Corma, S. Leiva, F. Rey, J. Rius, and S. Valencia, J. Am. Chem. Soc., 2005, 127(33), 11560–11561.
- [23] M. A. Camblor, A. Corma, P. Lightfoot, L. A. Villaescusa, and P. Wright, Angew. Chem. Int. Ed., 1997, 36, 2659–2661.
- [24] D. S. Wragg, R. Morris, A. W. Burton, S. I. Zones, K. Ong, and G. Lee, *Chem. Mater.*, 2007, 19(16), 3924–3932.
- [25] M. J. Diaz-Cabañas, P. A. Barrett, and M. A. Camblor, Chem. Commun., 1998, pp. 1882–1882.
- [26] P. A. Barrett, T. Boix, M. Puche, D. H. Olson, E. Jordan, H. Koller, and M. A. Camblor, *Chemm. Commun.*, 2003, (17), 2114–2115.
- [27] X. Yang, M. A. Camblor, Y. Lee, H. Liu, and D. H. Olson, J. Am. Chem. Soc., 2004, 126(33), 10403–10409.
- [28] L. Levien, C. Prewitt, and D. J. Weidner, Am. Mineral., 1980, 65, 920-930.
- [29] V. Bottom, J. Appl. Phys., 1975, 43, 1493-1495.
- [30] A. L. Spek, Acta crystallogr. D., 2009, 65, 148–155.
- [31] Y.-S. Bae, a. O. Yazaydin, and R. Q. Snurr, Langmuir, 2010, 26(8), 5475-83.
- [32] M. Palomino, A. Cantín, A. Corma, S. Leiva, F. Rey, and S. Valencia, *Chem. Commun.*, 2007, pp. 1233–1235.
- [33] M. Palomino, A. Corma, F. Rey, and S. Valencia, *Langmuir*, 2010, 26(3), 1910–1917.
- [34] M. Camblor, L. Villaescusa, and M. Díaz-Cabañas, Topics in Catalysis, 1999, 9, 59-76.
- [35] J. J. Gutierrez-Sevillano, D. Dubbeldam, F. Rey, S. Valencia, M. Palomino, A. Martin-Calvo, and S. Calero, J. Phys. Chem. C, 2010, 114, 14907–14914.