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Solar fuel approaches 

• Photocatalytic: suspended semiconductor nanoparticles 

• Photoelectrochemical: semiconductor electrodes 

• Internally biased by photovoltaics (PV) 

• Buried PV 

• PV-PEC (hybrid) 



A photoelectrochemical cell 

• Photoelectrode: a light-driven electrode that interacts with 

the electrolyte 

• Can be connected to a metal counter electrode or to a second 

photoelectrode 

• (Photo)anode: water oxidation electrode 

• (Photo)cathode: CO2 reduction electrode 



A photoelectrochemical cell 

• Electrode assembly may contain: 

• (Photo)electrodes 

• Co-catalysts 

• Internal PV junctions 

• Membrane 



A photoelectrochemical cell 

• PEC cell: 

• Electrode assembly 

• In- and outlets, reactor casing, ... 

• Electrolyte 



A photoelectrochemical cell 

• Management of multiple species: 

• Electrons: electronic transport 

• Protons: ionic transport 

• Molecules: molecular transport & 

molecular barrier function 

• Photons: optical transparency 



Electronic transport 

• Every single active component of the PEC cell should be 

electrically connected! 

• Conducting substrates 

• Sufficiently high crystal quality of the semiconductor 

• Link semiconductor-catalyst 

• Electrodes can be connected externally (through a wire) 

or internally (direct contact) 

• Back contacts allow more efficient  

current collection 

back contact 

wire 



Ionic transport 

• Negative or positive charges can be conveyed by 

hydroxide ions or protons, respectively 

• Liquid electrolytes 

• High [H+] or [OH-]  high conductivity 

                                 high corrosivity! 

• Redox mediator: e.g. IO3
-/I- as an electron shuttle 

• Solid electrolytes: fixed counter-ions, no liquid electrolyte 

needed 

• No concentration gradients 

• No danger of leaks 

• Gas phase reactions possible 



Ionic transport 

• The ionic conductivity of the electrolyte is often lower than 

the electronic conductivity of back contacts, wires etc. 

The ionic pathway should be kept as short as possible 

HCOO- η = 0.14 % η = 0.08 % 
Energy Environ. Sci. 6, 

1274 (2013) 

H2 η = 4.7 % η = 2.5 % Science 334, 645 (2011) 



Molecular transport 

• CO2 supply can be limiting, depending on the reaction 

medium 

• Liquid water: low CO2 solubility 

• Organic solvents: up to 8 times higher CO2 solubility 

• Gas phase: pure CO2 stream possible 

• Water supply may become limiting 

• Proton conductivity can be an issue 

• Supercritical CO2 phase: very high CO2 concentrations 

• The best results have been obtained in biphasic media (liquid / 

supercritical) 

• Product evacuation can be problematic 

• Gaseous products in liquid medium: bubble formation 

• Liquid products in gaseous medium: electrode flooding 



Molecular transport 

• Product cross-over reduces yields in absence of a 

molecular barrier 

• Liquid products in liquid media will readily cross-over 

• Gaseous products with low solubility in the reaction medium reduce 

cross-over 

• A molecular barrier impedes product cross-over 

• However, cross-over is never completely avoided 

• A molecular barrier also introduces additional ionic resistance 

 trade-off between molecular barrier function / ionic conductivity 



Transparency 
• All materials located in the light path should be 

transparent 

• Window should transmit UV and visible light 

• Minimal light absorption by e.g. co-catalysts on the surface 

• Nanostructures increase internal scattering  less 

specular reflection and more light absorption 

• When two semiconductors are used, the one absorbing 

long wavelengths should be at the bottom 



Oxidation and reduction reactions 

• Electrons require a certain electrochemical potential for 

transfer to other species in reduction-oxidation reactions 

• In addition, an overpotential is needed to compensate for 

kinetic and transport losses 



Oxidizing and reducing potential of a 

semiconductor 
• The electrochemical potential is delivered by the 

semiconductor 

• Conduction band electrons should be sufficiently negative, 

valence band holes should be sufficiently positive 

• Large band gap = shorter wavelengths! 



Photosystems 

• Single photosystem 

• Only one photon provides the driving force for both half-reactions 

• Wide band gap materials are required 

• The solar spectrum is not optimally utilized 



Photosystems 

• Tandem photosystems 

• Two, longer wavelength photons provide the driving force 

• Smaller band gap materials can be used 

• Mimic of natural photosynthesis (‘Z-scheme’) 

 



Photosystems 

• Integrated PV photosystem 

• An internal PV junction provides (additional) bias 

• The PV junction is shielded (‘buried’) from its environment 

• The PV can be combined with a semiconductor photoelectrode: PV-PEC 

• The  PV can be used as the sole photoactive element: Buried PV 

• Higher efficiency, but  

higher material cost 



Semiconductor – co-catalyst assemblies 

• Co-catalysts are often added to the semiconductor 

surface to enhance reaction rates by lowering the overall 

overpotential 

• Semiconductors and co-catalysts are the workhorses that 

transform solar energy into chemical products, in three 

steps: 

1. Light absorption 

2. Charge separation and charge carrier transport 

3. Electrocatalysis 



Light absorption 

• Determined by thermodynamics 

• Band gap energy of the semiconductor 

• Wavelength of the photon 

• Determined by the semiconductor absorption coefficient α 

• Influenced by optical effects 

• (Internal) scattering 

• Specular reflection 

 

See previous slides 



Charge separation and transport 

• Charge carrier recombination (~ps-µs) is faster than 

interfacial reactions (~ms) 

• Recombination is avoided by increasing charge carrier lifetime 

• Charge carrier lifetime is increased by efficient charge separation 

• This can be achieved by an electric field in the semiconductor and 

nanostructuring of materials 

+ 

- 

Reduction reaction 

Oxidation reaction 

Charge recombination 

CB 

VB 



Charge separation and transport 

• Electric fields in semiconductors are created by junctions 

• Solid state junction: typical for PV devices 

• Semiconductor-liquid junction: in PEC cells 

• Electric fields have also been induced by surface adsorbates 

p-type 

n-type 

+ 

- 
CB 

VB 

PV junction Semiconductor-liquid  junction 

p-type 

+ 

- 

electrolyte 

CB 

VB 



Charge separation and transport 

• Charge carrier diffusion length: distance a carrier can 

travel before it recombines 

• Nanostructuring increases surface area but decreases the distance 

carriers have to travel to reach the semiconductor surface 

• 1D-nanostructures allow sufficient light absorption without long 

carrier travel distances 

• Semiconductor doping may increase carrier diffusion length 

• Host-guest structures combine a light absorber (guest) with a host 

material for charge carrier collection 



Electrocatalysis 

• Co-catalysts are required to activate the CO2 molecule 

• Activation generally is achieved by breaking the linear symmetry of 

the molecule and forming C-H bonds 

• 4 parameters are often used to quantify performance: 

 

Catalyst Selectivity (CS) = 

 

Turnover Number (TON) =  

 

Turnover Frequency (TOF) =  

 

Faradaic Efficiency (FE) =   



Electrocatalysis 

• Metals: e.g. Cu, Au, Ag, Pd, Rh, Ru, Fe, Pb, Ni 

• Long-chain products 

• Mostly low selectrivity 

• Pt is less suitable: it favours H2 formation 

• Organic: e.g. pyridine, tetraalkylammonium salts 

• Abundant, low-cost 

• High selectivity 

• Metal-organic: e.g. Ni(cyclam), Re(bpy)(CO)3X 

• High selectivity 

• Mostly only 2-electron reductions possible 

• Often low stability, low TOF 



Stability 

• PEC cells may suffer from illumination, high or low pH, 

highly oxidative and reductive electric potentials 

• Semiconductor photocorrosion 

• Silicon, sulphides, phosphides: oxidized by valence band holes 

• Oxides: reduced by conduction band electrons 

• Can be prevented by protective coatings or rapid charge carrier 

extraction 

• Co-catalyst corrosion 

• Catalysts change between multiple oxidation states, which alters 

their ligand environment 

• Some catalysts self-assemble and self-heal, to cope with this 

intrinsic difficulty 



Overview 

PEC 

cell 
INPUT OUTPUT 

OPERATING PARAMETERS 

• Temperature, pressure 

• Electrolyte: composition, 

pH, physical state 

• Flow rates 

• Irradiation: intensity, 

wavelengths 

MATERIALS 

• Reactor 

• Semiconductors 

• Co-catalysts 

• Solid electrolyte 

• Coatings, interconnects, ... 

IN-SITU CHARACTERISATION 

• Photocurrent / -potential 

• Intermediates 

• Holes, electrons 

CHARACTERISATION 

• Products 


