Supplementary information

Facilitated transport of small molecules and ions for energy-efficient membranes

Yifan Li^{ab}, Shaofei Wang^{ab}, Guangwei He^{ab}, Hong Wu^{ab}, Fusheng Pan^{ab} and

Zhongyi Jiang*ab

a. Key Laboratory for Green Chemical Technology of Ministry of Education, School

of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.

b. Collaborative Innovation Center of Chemical Science and Engineering (Tianjin),

Tianjin 300072, China

*Corresponding author.

Tel. /Fax.: +862 223 500086

E-mail address: zhyjiang@tju.edu.cn.

Membrane	CO ₂ permeance (GPU) or permeability (Barrer)	CO ₂ /N ₂ selectivity	Testing conditions ^a	References
Polymeric membranes				
PVAm/PPO	440 GPU	183	Mixed gas (10 vol%CO ₂), 25°C, 5 bar	1
PVAm–EDA /PSf	607 GPU	106	Mixed gas (15 vol%CO ₂), 25°C, 1.1 bar	2
PVI-Zn/PSf	1120 GPU	83	Mixed gas (15 vol%CO ₂), 25°C, 1.1 bar	3
PVAm-MC/PS	1180 GPU	410	Mixed gas (15 vol%CO ₂), 25°C, 1.1 bar	4
DNMDAm-DGBAmE-TMC/PDMS/PSf	1600 GPU	138	Mixed gas (15 vol%CO ₂), 25°C, 1.1 bar	5
DAmBS-DGBAmE-TMC/PDMS/PSf	5830 GPU	86	Mixed gas (15 vol%CO ₂), 25°C, 1.1 bar	6
PVAm–PIP /PSf	6500 GPU	277	Mixed gas (15 vol%CO ₂), 25°C, 1.1 bar	7
PAA-C ₃ H ₇ –PVA	297 Barrer	341	Mixed gas (20 vol%CO ₂ + 40 vol% H ₂), 110°C, 2 atm	8
PANI /PP	3460 Barrer	540 ^b	Mixed gas (10 vol%CO ₂), 25°C, 1.28 bar	9
PAA-C ₃ H ₇ -PVA-Poly(siloxane)	6500 Barrer	>650	Mixed gas (20 vol%CO ₂ + 40 vol% H ₂), 110°C, 2 atm	10
Mixed matrix membranes				
PVAm–PANI /PSf	1200 GPU	120	Mixed gas (15 vol%CO ₂), 25°C, 1.1 bar	11
PVAm-PVP@PANI /PSf	3080 GPU	240	Mixed gas (15 vol%CO ₂), 25°C, 1.1 bar	12
PEI-hydrotalcite	5693 GPU	268	Mixed gas (15 vol%CO ₂), 25°C, 1.1 bar	13
Pebax-PEI@MCM41	1521 Barrer	102	Pure gas, 25°C, 3 bar	14
SPEEK–PEI@TiO2	1629 Barrer	64	Pure gas, 25°C, 3 bar	15
^a All the membranes were tested at humidif	iad state			

Table S1. A summary of facilitated CO₂ transport membranes involving nucleophilic addition reaction

^a All the membranes were tested at humidified state.

^b The value is actually CO₂/CH₄ selectivity.

Membrane	CO ₂ permeability (Barrer)	CO ₂ /N ₂ selectivity	Testing conditions	References
[P ₄₄₄₄][Gly]	5000	48	Mixed gas (10 vol%CO ₂), 100°C, 1 atm, dry membrane	16
[P ₆₆₆₁₄][Gly]	6900	100	Mixed gas (10 vol%CO ₂), 100°C, 1 atm, dry membrane	17
[Emim][Gly]	8300	146	Mixed gas (10 vol%CO ₂), 100°C, 1 atm, dry membrane	16
[P ₄₄₄₄][mGly]	10000	53	Mixed gas (10 vol%CO ₂), 100°C, 1 atm, dry membrane	17
[P ₄₄₄₄][Pro]	10600	100	Mixed gas (10 vol%CO ₂), 100°C, 1 atm, dry membrane	18
	30000	200	Mixed gas (2 vol%CO ₂), 100°C, 1 atm, humidified membrane	18
[P ₄₄₄₄][Pro] –PVP (gel)	7000	170	Mixed gas (2.5 vol%CO ₂), 100°C, 1 atm, dry membrane	19
^a The value is actually CO ₂ /CH ₄ selectivity. ^b Values are approximated from plots.				

Table S2. Typical facilitated CO₂ transport membranes containing amino acid ionic liquids

Polymer	Silver salt	Additive	Key anti-reduction species	References
PVP	AgNO ₃	_	NO ₃ -	20
POZ	AgNO ₃	BMIm ⁺ NO ₃ ⁻	BMIm ⁺ NO ₃ ⁻	21
PVP	AgBF ₄	dioctyl phthalate/HBF4	dioctyl phthalate	22
PEP	AgBF ₄	_	PEP	23
Pebax 2533	AgBF ₄	H_2O_2/HBF_4	H_2O_2	24
POZ	$AgBF_4$	Al(NO ₃) ₃	NO ₃ -	25
PES/PEO	$AgBF_4$	$Cu(NO_3)_2$	NO_3^-	26
PVDF-HFP	AgBF ₄	$BMIm^+BF_4^-$	PVDF-HFP BMIm ⁺ BF ₄ ⁻	27

Table S3. Typical facilitated olefin transport membranes suppressing silver reduction

References

- 1 M. Sandru, S. H. Haukebo and M. B. Hagg, J. Membr. Sci., 2010, 346, 172-186.
- 2 S. Yuan, Z. Wang, Z. Qiao, M. Wang, J. Wang and S. Wang, J. Membr. Sci., 2011, 378, 425-437.
- 3 K. Yao, Z. Wang, J. Wang and S. Wang, Chem. Commun., 2012, 48, 1766-1768.
- 4 Z. Ma, z. Qiao, Z. Wang, X. Cao, Y. He, J. Wang and S. Wang, RSC Adv., 2014, 4, 21313-21317.
- 5 S. Li, Z. Wang, X. Yu, J. Wang and S. Wang, Adv. Mater., 2012, 24, 3196-3200.
- 6 M. Wang, Z. Wang, S. Li, C. Zhang, J. Wang and S. Wang, Energy Environ. Sci., 2013, 6, 539-551.
- 7 Z. Qiao, Z. Wang, C. Zhang, S. Yuan, Y. Zhu, J. Wang and S. Wang, AIChE J., 2013, 59, 215-228.
- 8 Y. Zhao and W. S. Winston Ho, J. Membr. Sci., 2012, 415-416, 132-138.
- 9 N. V. Blinova and F. Svec, J. Membr. Sci., 2012, 423-424, 514-521.
- 10 Y. Zhao and W. S. W. Ho, Ind. Eng. Chem. Res., 2013, 52, 8774-8782.
- 11 J. Zhao, Z. Wang, J. Wang and S. Wang, J. Membr. Sci., 2012, 403-404, 203-215.
- 12 S. Zhao, Z. Wang, Z. Qiao, X. Wei, C. Zhang, J. Wang and S. Wang, J. Mater. Chem. A, 2013, 1, 246-249.
- 13 J. Liao, Z. Wang, C. Gao, S. Li, Z. Qiao, M. Wang, S. Zhao, X. Xie, J. Wang and S. Wang, *Chemical Science*, 2014, 5, 2843-2849.
- 14 H. Wu, X. Li, Y. Li, S. Wang, R. Guo, Z. Jiang, C. Wu, Q. Xin and X. Lu, J. Membr. Sci., 2014, 465, 78-90.
- 15 Q. Xin, H. Wu, Z. Jiang, Y. Li, S. Wang, Q. Li, X. Li, X. Lu, X. Cao and J. Yang, J. Membr. Sci., 2014, 467, 23-35.
- 16 S. Kasahara, E. Kamio, T. Ishigami and H. Matsuyama, Chem. Commun., 2012, 48, 6903.
- 17 S. Kasahara, E. Kamio and H. Matsuyama, J. Membr. Sci., 2014, 454, 155-162.
- 18 S. Kasahara, E. Kamio, T. Ishigami and H. Matsuyama, J. Membr. Sci., 2012, 415-416, 168-175.
- 19 S. Kasahara, E. Kamio, A. Yoshizumi and H. Matsuyama, Chem. Commun., 2014, 50, 2996-2999.
- 20 J. H. Kim, C. K. Kim, J. Won and Y. S. Kang, J. Membr. Sci., 2005, 250, 207-214.
- 21 S. W. Kang, J. Hong, K. Char, J. H. Kim, J. Kim and Y. S. Kang, Desalination, 2008, 233, 327-332.
- 22 B. Jose, J. H. Ryu, B. G. Lee, H. Lee, Y. S. Kang and H. S. Kim, Chem. Commun., 2001, 2046-2047.
- 23 S. W. Kang, J. H. Kim, K. S. Oh, J. Won, K. Char, H. S. Kim and Y. S. Kang, J. Membr. Sci., 2004, 236, 163-169.
- 24 T. C. Merkel, R. Blanc, I. Ciobanu, B. Firat, A. Suwarlim and J. Zeid, J. Membr. Sci., 2013, 447, 177-189.
- 25 S. W. Kang, J. H. Kim, J. Won and Y. S. Kang, J. Membr. Sci., 2013, 445, 156-159.
- 26 M. Esmaeili, S. S. Madaeni and J. Barzin, Sep. Purif. Technol., 2013, 103, 289-305.
- 27 M. Fallanza, A. Ortiz, D. Gorri and I. Ortiz, J. Membr. Sci., 2013, 444, 164-172.