Supplementary Information to

Metal Organic Framework based Mixed Matrix Membranes: a solution for highly efficient CO₂ capture?

Beatriz Seoane¹, Joaquin Coronas^{2a}, Ignacio Gascon^{2b}, Miren Etxeberria Benavides³, Oğuz Karvan³, Jürgen Caro⁴, Freek Kapteijn¹ and Jorge Gascon^{1,*}

¹ Catalysis Engineering, ChemE, Delft University of Technology, Julianalaan 136, 2628 BL Delft, The Netherlands.

^{2a} Chemical and Environmental Engineering Department and Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza, 50018 Zaragoza, Spain.

^{2b} Physical Chemistry Department and Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza, 50018 Zaragoza, Spain.

³Tecnalia, Energy and Environmental Division, Parque Tecnológico de San Sebastián, Mikeletegi Pasealekua 2, E-20009 Donostia-San Sebastián, Spain.

⁴ Institut für Physikalische Chemie und Elektrochemie, Leibniz Universität Hannover, Callinstr. 22, D-30167 Hannover, Germany.

*Correspondence to: j.gascon@tudelft.nl

List of acronyms and abbreviations

μ-BPA	1,2-Bis(4-pyridyl)ethane
μ-BPP	1,3-Bis(4-pyridyl)propane
1,4-BDC (or BDC)	1,4-Benzenedicarboxylate
2,6-NDC	2,6-Napthalenedicarboxylate
2-amBzIM	2-Aminobenzimidazole
2MI	2-Methylimidazole
4,4' BPDC	4,4'-Biphenyl dicarboxylate
4,4'-BPY	4,4'-Bipyridine
4,4'-SDA	Bis(4-aminophenyl) sulphide
4MPD	2,3,5,6-Tetramethyl-1,4-phenylenediamine
6FDA	4,4'-(Hexafluoroisopropylidene)diphthalic anhydride
6F-PBI	Hexafluoroisopropylidene-containing polybenzimidazole
APTMDS	Bis(3-aminopropyl)tetramethyldisiloxane
В	Bulk crystals
BTC	1,3,5-Benzenetricarboxylate
BuI	5-Tert-butylisophthalic acid
BzIM	Benzimidazole
CCS	Carbon Capture and Storage
CLC	Chemical looping combustion
CMS	Carbon molecular sieves
DABA	3,5-Diaminobenzoic acid
DABCO	1,4-Diazabicyclo[2.2.2]octane
DAM (or TMPDA)	2,4,6-Trimethyl-m-phenylenediamine
DBzPBI	PBI after N-substitution reaction with 4-tert-butylbenzyl bromide
DEA	Diethanolamine
DMF	Dimethylformamide
DMPBI	PBI after N substitution reaction with methyl iodide
DSDA	3,3',4,4'-Diphenylsulfone tetracarboxylic dianydride
ETS	Emissions Trading System
Glu	Glutarate
GPU	Gas permeance units
H ₂ hfipbb	4,4'-Hexafluoroisopropylidene bis(benzoic acid)
HFb	Hollow fiber
HFS	Hexafluorosilicate
HHV	Higher heating value
HSP	Hansen solubility parameters
IAST	Ideal adsorbed solution theory
IGCC	Integrated gasification combined cycle
IPA	Isopropanol
IPCC	Intergovernmental Panel on Climate Change
LANL	Los Alamos National Laboratory

LB	Langmuir-Blodgett
LCOE	Levelized Cost of Energy
M^4	MOF-based mixed matrix membrane
M ⁴ -HFb	MOF-based mixed matrix membrane in asymmetric hollow fiber geometry
MEA	Monoethanolamine
MM-HFbM	Mixed matrix membranes in asymmetric hollow fiber geometry
MMM	Mixed-matrix membrane
MOF	Metal organic framework
MS	Maxwell-Stefan
MSS	Mesoporous silica spheres
MTR	Membrane Technology and Research, Inc.
Nc	Nanoparticle crystals
NH ₂ -BDC	2-Aminoterephthalate
Ns	Nanosheets
ODA	4,4'-Oxydianiline
ODPA	4,4'-Oxydiphthalicanhydride
PA	Polyamide
PAET	Poly(3-acetoxyethylthiophene)
PAI	Polyamide-imide
PBI	Polybenzimidazole
PC	Pulverized coal
PDMS	Polydimethylsiloxane
PEI	Polyethylenimine
PES	Polyethersulfone
PI	Polyimide
PIM	Polymer of intrinsic microporosity
PLLA	Poly(L-lactic acid)
PMDA	Pyromellitic dianhydride
PMMA	Poly(methyl methacrylate)
PMP	Poly (4-methyl-1-pentyne)
PMPS	Polymethylphenylsiloxane
POZ	Polyoxazoline
PPEES	Poly-(1,4-phenylene ether-ether-sulfone)
PPO	Poly(2,6-dimethyl-1,4-phenylene oxide)
PSF	Polysulfone
PTMSP	Poly[1-(trimethylsilyl)-1-propyne]
PVAc	Poly(vinyl acetate)
SET-plan	European Strategic Energy Technology Plan
TED	Triethylenediamine
ТРХ	Polymethylpentene
XLPEO	Cross-linked polyethylene oxide
ZEP	Zero Emission Fossil Fuel Power Plants

List of symbols

А	Membrane area	m ²
bi	Affinity constant of specie i	Pa ⁻¹
Ci	Concentration of component i	mol/m ³
C_i^{sat}	Langmuir capacity constant of specie i	mol/m ³
D_{f}	Diffusivity of specie i in the filler	m²/s
D _i	Diffusion coefficient of component i	m²/s
Ði	Maxwell-Stefan diffusivity of component i	m ² /s
$\mathrm{D_{i}^{eff}}$	'Effective' diffusion coefficient of component i	m²/s
$\mathbf{D}_{i}^{\mathrm{H}}$	Diffusivity of specie i in the Henry environment	m²/s
D_i^{L}	Diffusivity of specie i in the Langmuir environment	m^{2}/s
D _{Kn,i}	Knudsen diffusion coefficient of component i	m²/s
D _m	Diffusivity of specie i in the matrix	m²/s
do	Pore diameter	m
D _{self,i}	Self-diffusivity of component i	m²/s
F	Correction factor	-
\mathbf{f}_{i}	Fugacity of component i	Ра
K	Interfacial equilibrium constant or partition coefficient	-
K _i	Langmuir isotherm adsorption constant	Pa ⁻¹
K_i^{H}	Henry adsorption coefficient of specie i	mol/(Pa·m ³)
L	Membrane thickness	m
M_i	Molecular weight of component i	kg/mol
N _c	Molar flux of a gas species in the continuous phase of a MMM	$mol/(m^2 \cdot s)$
N _d	Molar flux of a gas species in the dispersed phase of a MMM	$mol/(m^2 \cdot s)$
N _{eff}	Effective molar flux of a gas species in a MMM	$mol/(m^2 \cdot s)$
N _i	Molar flux of component i	$mol/(m^2 \cdot s)$
\mathbf{P}_{f}	Permeability of specie i in the filler	$(mol \cdot m)/(m^2 \cdot s \cdot Pa)$
P _i	Permeability coefficient of component i	$(mol \cdot m)/(m^2 \cdot s \cdot Pa)$
\mathbf{p}_{i}	Partial pressure of component i	Ра
P _m	Permeability of specie i in the matrix	$(mol \cdot m)/(m^2 \cdot s \cdot Pa)$
q_i	Adsorbed amount or loading of component i in a porous material	mol/kg
q_i^{sat}	Maxim adsorbed amount or loading of component i in a porous solid at saturation	mol/kg
R	Gas constant	$J/(mol \cdot K)$
R _a	Distance between Hansen parameters	Pa ^{0.5}
\mathbf{S}_{ij}	Ideal selectivity	-
Т	Temperature	К
X _i	Mole fractions of component i	-
α_{ij}	Separation factor	-
Γ_{ii}	Thermodynamic correction factor	-

ZIF

$\delta_{\rm D}$	Hansen solubility parameter to quantitatively describe the dispersion or London interaction between two phases	Pa ^{0.5}
$\delta_{\rm H}$	Hansen solubility parameter to quantitatively describe the hydrogen bonds between two phases	Pa ^{0.5}
δ_P	Hansen solubility parameter to quantitatively describe the polar interaction between two phases	Pa ^{0.5}
Δpi	Partial pressure difference for component i across the membrane	Ра
E	Porosity	-
θ_i	Fractional coverage of the surface in a porous material	-
Р	Density	kg/m ³
Т	Tortuosity	-
ϕ_d	Volume fraction of the dispersed phase in a MMM	-

Table 2: Overview of the reported MOF-containing MMMs for gas separation in chronological order

M^4		wt.% loading			Example (be	est performance)	1		Type of analysis	Operatio conditio (optimal va	on ns alue)
MOF	Polymer	performance)	PCO ₂ (Barrer)	<i>CO₂/CH₄</i> selectivity (-)	<i>PCO</i> ₂ (Barrer)	CO ₂ /N ₂ selectivity (-)	P H ₂ (Barrer)	H ₂ /CO ₂ selectivity (-)		<i>T</i> (°C)	∆P (bar)
		10.20 (20)	1.4-(0.7)	18.0-(3.2)	-	-	-	-	Single gas CO ₂ , O ₂ , N ₂ , CH ₄	25	2
Cu 4,4'-BPDC-TED	PAET	10-30 (30)	-	-	-	-	-	-	Gas mixture CH ₄ /CO ₂ (10:90)	- 25	2
$[Cu_2(PF_6)(NO_3)(4,4' -bpy)_4]2PF_6 \cdot 2H_2O$	PSF	2.5-5 (5)	-	-	-	-	-	-	Single gas He, H ₂ , O ₂ , N ₂ , CH ₄	35	1
	PAI	_	46.7- (109)	49.7-(40.4)	46.7- (109)	28.3-(24.6)	79.2- (191)	1.7-(1.8)	_		
$[Zn_2(1,4-bdc)_2 (dabco)]$ $\cdot 4DMF \cdot 0.5H_2O$	6FDA- 4MPD	30	1000- (3330)	23.0-(19.6)	1000- (3330)	21.4-(19.1)	743- (1890)	0.7-(0.6)	Single gas	-	-
4DMI 0.51120	PDMS	_	2830- (4010)	3.4-(3.7)	2830- (4010)	10.5-(10.0)	673- (955)	0.2-(0.2)			
ULUST 1	PDMS	10-40(30, 10, 40)	2500- (2900)*	3.1-(3.6)*	2500- (3050)*	7.0-(8.9)*	550- (900)*	0.2-(0.4)*			
пк051-1	PSF	5-10 (5, 10)	6.5-(7.5)*	18-0- (21.5)*	6.5-(7.5)*	20.0-(25.0)*	9.8- (15.0)*	1.5-(1.9)*	Single gas H ₂ , CO ₂ , O ₂ , N ₂ , CH ₄	-	-
Mn(HCOO) ₂	PSF	5-10 (10, 5)	6.5 - (7.0)*	18.0-(9.5)*	6.5-(7.0)*	20.0-(25.5)*	9.5- (10.5)*	1.5-(1.6)*			
		10-40 (20, 30)	7.3-(9.9)	34.7-(27.6)	7.3-(9.9)	33.1-(31.9)	17.5- (20.3)	2.4-(2.0)	Single gas H ₂ , CO ₂ , O ₂ , N ₂ , CH ₄		
Cu-4,4'-BPY-HFS	Matrimid®	20	-	36.3-(20.5)	-	-	-	2.6-(2.6)	Gas mixture H ₂ /CO ₂ (<u>50:50</u> , 75:25) CO ₂ /CH ₄ (<u>50:50</u> , 10:90) CH ₄ /N ₂ (94:6, 50:50)	35	2
	Matrimid®	20	10.0- (38.8)	28.2-(29.2)	-	-	33.1- (114.9)	3.3-(3.0)			
IKMUF-I	Ultem®	10, 20 (20)	2.0-(3.0)	30.3-(26.3)	-	-	11.2- (16.9)	5.7-(5.7)	Single gas H ₂ , CO ₂ , CH ₄	50	7
HKUST-1	Matrimid®	30	10.0- (22.1)	28.2-(29.8)	-	-	33.1- (66.9)	3.3-(3.0)	-		
MOF-5	Matrimid®	10-30 (30)	9.0- (20.2)	41.7-(44.7)	9.0- (20.2)	36.0-(38.8)	24.4- (53.8)	2.7-(2.7)	Single gas H ₂ , CO ₂ , O ₂ , N ₂ , CH ₄	35	2

		30	-	38.0-(29.0)	-	-	-	2.3-(2.3)	Gas mixture H ₂ /CO ₂ (75:25, <u>50:50</u> , 25:75) CH ₄ /N ₂ (94:6, 50:50, 25:75) CO ₂ /CH ₄ (10:90, <u>50:50</u> , 25:75)		
ZIF-8	PPEES	10-30 (30)	6-(25)	-	6-(25)	-	-	-	-	30	1, <u>2</u> , 3, 5, 7, 10
Cu 1,4-BDC	PVAc	15	2.4-(3.3)	34.9-(40.4)	2.4-(3.3)	32.1-(35.4)	-	-	Single gas He, CO ₂ , O ₂ , N ₂ , CH ₄	35	4.5 (0.1 for CO ₂)
		20-60 (50)	9.5-(4.7)	39.7- (124.9)	9.5-(4.7)	30.6-(26.2)	28.9- (18.1)	3.0-(3.8)	Single gas H ₂ , CO ₂ , O ₂ , N ₂ , CH ₄ , C ₃ H ₈		
ZIF-8	Matrimid®	50-60 (50, 60)	-	42.1-(89.2)	-	-	-	2.6-(7.0)	Gas mixture H ₂ /CO ₂ (50:50) CO ₂ /CH ₄ (10:90)	25	2.7
HKUST-1	Matrimid®	10-30 (30)	10.0- (17.5)* (GPU)	18.0-(24.0)*	11.0- (18.5)* (GPU)	23.5-(24.5)*	-	-	Gas mixture CO ₂ /CH ₄ (10:90, <u>35:65</u> , 75:25) CO ₂ /N ₂ (10:90, <u>35:65</u> , 75:25)	35	10
HKUST-1	PMDA- ODA	3-6 (3, 6)	306.6- (227.2)	12.0-(7.0)*	306.6- (227.2)	8.0-(5.5)*	3066- (4445)	10.0-(27.8)	Single gas H_2 , CO_2 , O_2 , N_2 , CH_4	25	10
	Ultem®		1.4-(2.9)*	38-(39)*	-	-	-	-			
ZIF-90	Matrimid®	15	7.5- (10.5)*	34-(35)*	-	-	-	-	Single gas CO ₂ , CH ₄	35	4.5
	6FDA- DAM		390- (720)	24-(37)	-	-	-	-	Gas mixture CO ₂ /CH ₄ (50:50)	25	2
ZIF-20	PSF	8	-	-	-	-	-	-	Gas mixture O ₂ /N ₂ (50:50)	35	2
NH ₂ -MIL-53(Al)	PSF	8, 16, 25, 40 (25)	2.0-(2.4)	45-(117)	-	-	-	-	Gas mixture CO ₂ /CH ₄ (50:50)	<u>-10</u> , 35	1, 3, 5, 7, <u>10</u> , 13
							3.7- (26.2)	8.7-(14.9)	Single gas H ₂ , CO ₂	35	3.5
ZIF-7	PBI	10, 25, 50 (50)	-	-	-	-	75-(440)*	8.5-(7.2) [*]	Gas mixture H ₂ /CO ₂ (50:50)	35, 60, 80, 120, 150, <u>180</u>	7
ZIF-8 + S1C	PSF	16+0, 8+8 (16+0)	4.6- (12.1)	24.3-(19.8)	5.9- (12.3)	24.6-(19.5)	-	-	Gas mixture CO ₂ /CH ₄ (50:50) CO ₂ /N ₂ (50:50)	35	2

	16+0, 8+8 (8+8)	4.6-(4.9)	24.3-(22.4)	5.9-(8.4)	24.6-(38.0)	-	-	O ₂ /N ₂ (50:50) H ₂ /CH ₄ (50:50)						
		10.0- (17.5)* (GPU)	18.5-(23.0)*	11.5- (19.5)* (GPU)	18.0-(23.5)*	-	-							
- Matrimid®	10, 20, 30 (30)	10.0- (22.5)* (GPU)	18.5-(19.5)*	11.5- (20.0)* (GPU)	18.0-(19.5)*	-	-	Gas mixture CO ₂ /CH ₄ (10:90, <u>35:65</u> , 75:25) CO ₂ /N ₂ (10:90, <u>35:65</u> , 75:25)	35	10				
_						10.0- (20.0)* (GPU)	18.5-(22.5)*	11.5- (20.0)* (GPU)	18.0-(23.0)*	-	-	-		
PPEEs	10, 20, 30 (30)	5.4- (50.0)	22.9-(20.8)	5.4- (50.0)	30.1-(24.5)	6.7- (92.3)	1.3-(1.8)	Single gas H ₂ , CO ₂ , O ₂ , N ₂ , CH ₄ , C ₂ H ₄ , C ₂ H ₆	10, <u>20</u> , 30, 40	1				
								Single gas C ₃ H ₆ , C ₃ H ₈		2				
6FDA- DAM	16.4, 28.7, 48 (48)	-	-	-	-	-	-	Gas mixture C ₃ H ₆ /C ₃ H ₈ (50:50)	35	1.4, 2.8, 4.1, 5.5				
_	8, 16, 24	-	-	-	-	-	-		30					
- DSE	PSF 8	-	-	-	-	-	-	- Single gas O. N.		2				
-		8	-	-	-	-	-	-	- Single gas O_2 , N_2	30	3			
		-	-	-	-	-	-	- 						
3(Al)	25	14.5- (21.0)*	48.0-(44.0)*	-	-	-	-	Single gas CO ₂ , CH ₄						
6FDA-	25	14.5- (21.0)*	42.0-(42.5)*	-	-	-	-	Gas mixture CO ₂ /CH ₄ (50:50)	25	10				
ODA	10, 15, 20,	14.5- (14.7)*	48.0-(76.0)*	-	-	-	-	Single gas CO ₂ , CH ₄		10				
	(32)	14.5- (14.7)*	42.0-(53.0)*	-	-	-	-	Gas mixture CO ₂ /CH ₄ (50:50)						
Ultem®	10 12 (12)	-	-	14.0- (26.0) (GPU)	30.0-(36.0)	_	-	Single gas CO ₂ , N ₂	25, 30, <u>35</u> , 45	6.7				
	Ultem®	Ultem®	Ultem®	10, 13 (13)	-	-	(26.0)* (GPU)	(32.0)	-	-	Gas mixture CO ₂ /N ₂ (20:80)	<u>25</u> , 35, 45	2.1, 2.8, <u>3.4</u>	
PMDA-	5	0.30- (0.21)	72.1-(50.5)	0.30- (0.21)	34.8-(27.5)	0.35-(0.42)	1.1-(2.0)	Single gas He, H ₂ , CO ₂ , N ₂ , CH ₄	25	6				
	- Matrimid® - PPEEs 6FDA- DAM - PSF - 6FDA- ODA - ODA Ultem®	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{16+0, 8+8}{(8+8)} = 4.6-(4.9)$ $\frac{16+0, 8+8}{(8+8)} = 4.6-(4.9)$ $\frac{10, 0}{(17, 5)^{*}} = \frac{(GPU)}{(GPU)}$ $\frac{10, 20, 30}{(30)} = \frac{10, 20, 30}{(GPU)}$ $\frac{6FDA}{DAM} = \frac{10, 20, 30}{(30)} = \frac{5.4}{(50.0)}$ $\frac{6FDA}{DAM} = \frac{16.4, 28.7, 48}{(48)} = -\frac{-}{(50.0)}$ $\frac{6FDA}{DAM} = \frac{8, 16, 24}{-} = -\frac{-}{(21.0)^{*}}$ $\frac{8, 16, 24}{-} = -\frac{-}{(21.0)^{*}}$ $\frac{14.5-}{(21.0)^{*}} = -\frac{-}{(14.7)^{*}}$ $\frac{10, 15, 20, 25, 30, 32, 35}{(32)} = \frac{-}{(14.7)^{*}}$ $\frac{10, 15, 20, 25, 30, 32, 35}{(14.7)^{*}} = -\frac{-}{(14.7)^{*}}$ $Ultem = 10, 13 (13) = -\frac{-}{(0.21)}$	$\frac{16+0, 8+8}{(8+8)} = 4.6-(4.9) = 24.3-(22.4)$ $\frac{16+0, 8+8}{(8+8)} = 4.6-(4.9) = 24.3-(22.4)$ $\frac{10, 0.0-}{(17.5)^*} = 18.5-(23.0)^* = 10.23.0^* = $	$\frac{16+0, 8+8}{(8+8)} = 4.6-(4.9) = 24.3-(22.4) = 5.9-(8.4)$ $\frac{16+0, 8+8}{(8+8)} = 4.6-(4.9) = 24.3-(22.4) = 5.9-(8.4)$ $\frac{10, 20, 30}{(30)} = \frac{10.0-}{(17.5)^*} = 18.5-(23.0)^* = \frac{11.5-}{(19.5)^*} = (20.0)^* = (GPU)$ $\frac{10.0-}{(22.5)^*} = 18.5-(19.5)^* = (20.0)^* = (GPU)$ $\frac{10.0-}{(20.0)^*} = 18.5-(22.5)^* = (20.0)^* = (GPU)$ $\frac{10.0-}{(20.0)^*} = 18.5-(22.5)^* = (20.0)^* = (GPU)$ $\frac{6FDA-}{DAM} = 16.4, 28.7, 48 = $	$\frac{16+0, 8+8}{(8+8)} = 4.6-(4.9) = 24.3-(22.4) = 5.9-(8.4) = 24.6-(38.0)$ $\frac{16+0, 8+8}{(8+8)} = 4.6-(4.9) = 24.3-(22.4) = 5.9-(8.4) = 24.6-(38.0)$ $\frac{10.0-}{(17.5)^*} = 18.5-(23.0)^* = 11.5- = (19.5)^* = 18.0-(23.5)^* = (10.0)^* = (14.5)^* = (14.5)^* = (14.5)^* = (14.5)^* = (14.5)^* = (14.5)^* = (14.5)^* = (14.5)^* = (14.5)^* = (14.5)^* = (14.5)^* = (14.7)^* = 48.0-(76.0)^* = (10.0)^* = (10.0)^* = (10.0)^* = (14.5)^* = (14.7)^* = 48.0-(76.0)^* = (10.0)^* = (10.0)^* = (10.0)^* = (14.5)^* = (14.7)^* = 48.0-(76.0)^* = (10.0)^* = (10.0)^* = (10.0)^* = (14.5)^* = (14.7)^* = 48.0-(76.0)^* = (10.0)^* = (10.0)^* = (14.5)^* = (14.7)^* = 48.0-(76.0)^* = (10.0)^* = (10.0)^* = (10.0)^* = (14.5)^* = (14.7)^* = 48.0-(76.0)^* = (14.7)^* = (14.0)^* = (10.0)^* = (14.7)^* = 48.0-(76.0)^* = (14.0)^* = (14.0)^* = (10.0)^* = (14.7)^* = 48.0-(76.0)^* = (14.0)^* = (1$	$\frac{16+0, 8+8}{(8+8)} = 4.6-(4.9) = 24.3-(22.4) = 5.9-(8.4) = 24.6-(38.0) = - \frac{16+0, 8+8}{(8+8)} = 4.6-(4.9) = 24.3-(22.4) = 5.9-(8.4) = 24.6-(38.0) = - \frac{11.5-}{(GPU)} = $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				

MOF-5			0.30- (0.27) (GPU)	72.1-(56.8)	0.30- (0.27) (GPU)	34.8-(14.1)	0.35- (0.24) (GPU)	1.1-(0.9)															
HKUST-1			0.30- (0.32) (GPU)	72.1-(73.6)	0.30- (0.32) (GPU)	34.8-(38.1)	0.35- (0.44) (GPU)	1.1-(1.3)															
ZIF-8	Matrimid®	10, 25 (25)	10.7- (23.2)	34-(39)	-	-	-	-	Single gas CO ₂ , CH ₄	35	4.5												
ZIF-8	Matrimid®	5, 10, 20, 30, 40 (20, 30)	8.1- (16.6)	35.2-(35.8)	8.1- (16.6)	22.4-(19.0)	32.7- (112.1)	4.0-(3.9)	Single gas H ₂ , CO ₂ , O ₂ , N ₂ , CH ₄	22	4												
UiO-66			14.4- (50.4)	44.1-(46.1)	-	-	-	-	Single gas CO ₂ , CH ₄	_													
			-	41.7-(42.3)	-	-	-	-	Gas mixture CO ₂ /CH ₄ (50:50)	_													
NH ₂ -UiO-66			14.4- (13.7)	44.1-(51.6)	-	-	-	-	Single gas CO ₂ , CH ₄	_													
			-	41.7-(44.7)	-	-	-	-	Gas mixture CO ₂ /CH ₄ (50:50)	_													
HKUST-1	6FDA-	25	14.4- (21.8)	44.1-(51.2)	-	-	-	-	Single gas CO ₂ , CH ₄	35	10												
	UST-1		-	41.7-(50.7)	-	-	-	-	Gas mixture CO ₂ /CH ₄ (50:50)	_													
NH ₂ -HKUST-1				14.4- (26.6)	44.1-(59.6)	-	-	-	-	Single gas CO ₂ , CH ₄	_												
				-	41.7-(52.4)	-	-	-	-	Gas mixture CO ₂ /CH ₄ (50:50)	_												
UiO-67															_		14.4- (20.8)	44.1-(15.0)	-	-	-	-	Single gas CO ₂ , CH ₄
			-	41.7-(15.0)	-	-	-	-	Gas mixture CO ₂ /CH ₄ (50:50)														
	PBI	18, 20, 29, 34, 59 (29)	-	-	-	-	3.7- (105.4)	8.6-(12.3)	- Single gas H. CO	25	3.5												
ZIF-8		10, 20, 33 (10)	-	-	-	-	2.1-(8.9) (GPU)	6.2-(9.5) (GPU)	Single gas 11 ₂ , CO ₂	25	5.5												
	PBI/ Matrimid®	10, 20, 33 (10)	-	-	-	-	(65.4) (GPU)	(12.3) (GPU)	Gas mixture H ₂ /CO ₂ (50:50)	25, 80, 120, 150, <u>180</u>	7												
ZIF-8	6FDA- DAM:DAB A 4:1	20	-	-	211.4- (553)	21.3-(19.3)	-	-	Single gas CO ₂ , N ₂	30	1.4												
ZIF-8			-	-	-	-	4.1- (82.5)	8.9-(12.0)	Single gas H ₂ , CO ₂	35	3.5												
	PBI	30, 60 (30)	-	-	-		(470)	(26.3)	Gas mixture <u>H₂/CO₂ (50:50)</u>	35, 60, 120, 180,	2												

									H ₂ /CO ₂ /CO (49.5:49.5:1)	<u>230</u>	
ZIF-7	Pebax®	8, 22, 34 (22)	72-(111)	14-(30)	72-(111)	34-(97)	-	-	Single gas CO ₂ , N ₂ , CH ₄	20	6.5 (2.75 for CO ₂)
ZIF-8	PIM-1	13.8, 24.2, 32.4, 39.0 (39.0)	4390- (6300)	14.2-(14.7)	4390- (6300)	24.4-(18.0)	1630- (6680)	0.4-(1.1)	Single gas He, H ₂ , CO ₂ , O ₂ , N ₂ , CH ₄	20-22	1
HKUST-1			-	-	-	-	-	-			
FeBTC	P84	20	_	-	-	-	-	-	Gas mixture C ₂ H ₄ / C ₂ H ₆ (80:20)	-	5, 10, 15
MIL-53(Al)	_		-	-	-	-	-	-	-		
HKUST-1	P84	10, 20, 40 (20)	-	-	-	-	-	-	Gas mixture C ₂ H ₄ / C ₂ H ₆ (80:20)	-	5, 10, 15
		10, 25, 45 (45)	-	-	-	-	4.1- (24.5)	8.9-(25)	Single gas H ₂ , CO ₂	35	3.5
ZIF-90	PBI	45	-	-	-	-	(226.9)	(13.3)	Gas mixture H ₂ /CO ₂ (50:50)	35, 60, 80, 120, <u>180</u>	7
HKUST-1	РРО	10, 20, 30, 40, 50 (40)	68.7- (115)*	16.4-(34)*	68.7- (115)*	16.0-(26)*	75.0- (119)*	1.1-(1.0)*	Single gas H ₂ , CO ₂ , N ₂ , CH ₄	30	-
	6FDA- durene	_	468.5- (1552.9)	15.6-(11.0)	468.5- (1552.9)	13.4-(11.3)	518.5- (2136.6)	1.1-(1.4)			
ZIF-8	6FDA- durene (cross- linked)	33.3	0.4- (23.7)	(16.9)	0.4- (23.7)	(11.9)	52.1- (283.5)	130.3- (12.0)	Single gas H ₂ , CO ₂ , O ₂ , N ₂ , CH ₄	35	3.5
NH2-MIL-53(Al)	6FDA:DSD A- 4MPD:4,4' -SDA 1:1	0, 5, 10, 15 (15)	57.9- (66.5)	35.1-(36.9)	-	-	90.1- (100)	1.6-(1.8)	Single gas H ₂ , CO ₂ , CH ₄	35	3
	6FDA- 4MPD:4,4' -SDA 1:1	10	134- (137)	30.2-(27.2)	-	-	169- (175)	1.3-(1.3)			

NH2-MIL-101(Al)	6FDA:DSD A- 4MPD:4,4' -SDA 1:1	0, 5, 10 (10)	57.9- (70.9)	35.1-(41.6)	-	-	90.1- (114)	1.6-(1.6)					
	6FDA- 4MPD:4,4' -SDA 1:1	10	134- (151)	30.2-(29.6)	-	-	169- (191)	1.3-(1.3)					
NH ₂ -CAU-1	PMMA	5, 10, 15, 20,	-	-	-	-	5000- (11000)	3-(13)	Single gas H ₂ , CO ₂	RT	3		
		25 (15)	-	-	-	-	-	2-(10)*	Gas mixture H ₂ , CO ₂ (-)				
MIL-68(Al)	PSF	4, 8 (8)	5.4-(4.7)	31.1-(36.5)	-	-	-	-	Gas mixture CO ₂ /CH ₄ (50:50)	35	2		
HKUST-1	PLLA	5	-	-	-	-	-	-	- CO ₂ , O ₂	23	-		
-	6FDA- durene (400 °C)	20	541- (1090)	13.1-(13.0)	-	-	-	-	— Single gas CO ₂ , CH ₄ , C ₃ H ₆ , C ₃ H ₈ —				
	6FDA- durene:DA BA 9:1 (200 °C)	5, 10, 15, 20, 30, 40 (40)	256- (779)	19.5-(20.9)	-	-	-	-		35	10 (3.5 for C ₃ H ₆ and		
ZIF-8	6FDA- durene:DA BA 7:3 (400 °C)	20	429- (698)	26.0-(25.8)	-	-	-	-			C_3H_8)		
	6FDA- durene:DA BA 9:1 (400 °C)	20, 40 (20)	305- (728)	13.8-(19.6)	-	-	-	-	Gas mixture CO ₂ /CH ₄ (50:50)	35	20		
	Matrimid®	15	6.2-(9.2)	31.0-(2.1)	-	-	-	-	Single gas CO ₂ , CH ₄				
NH ₂ -MIL-53(Al)		15	-	28.5-(2.1)	-		-	-	Gas mixture CO ₂ /CH ₄ (50:50)				
	L]]tem®	15	1.5-(3.0)	39.5-(36.2)	-	-	-	-	Single gas CO ₂ , CH ₄				
		15	-	31.6-(36.1)	-	-	-	-	Gas mixture CO ₂ /CH ₄ (50:50)	35	10		
	6FDA- ODA:DAM	15, 20, 22	54.1- (51.2)	23.5-(34.1)	-	-	-	-	Single gas CO ₂ , CH ₄				
	1:1	ODA:DAM 1:1	ODA:DAM 1:1	ODA:DAM 1:1	(10)	-	23.6-(31.8)	-	-	-	-	Gas mixture CO_2/CH_4 (50:50)	

										_																			
	6FDA- ODA:DAM	10, 15, 20	130.0- (113)	23.2-(28.2)	-	-	-	-	Single gas CO ₂ , CH ₄																				
	1:4	(15)	-	23.6-(28.5)	-	-	-	-	Gas mixture CO ₂ /CH ₄ (50:50)	-																			
			32.2- (58.5)	18.9-(36.6)	-	-	-	-	Single gas CO ₂ , CH ₄																				
	6FDA- ODA:DAM 1:1 (APTMDS)	15, 20, 25, 30, 32, 35 (30)	-	20.2-(33.9)	-	-	-	-	Gas mixture CO ₂ /CH ₄ (10:90) CO ₂ /CH ₄ (35:65) <u>CO₂/CH₄ (50:50)</u> CO ₂ /CH ₄ (60:40) CO ₂ /CH ₄ (80:20) CO ₂ /CH ₄ (85:15)	30, <u>35,</u> 45, 60, 75	3.4-41 (<u>10</u>)																		
	Matrimid®	15	6.2-(6.7)	31.0-(9.4)	-	-	-	-	Single gas CO ₂ , CH ₄	_																			
	Maumnuw	15	-	28.5-(8.5)	-	-	-	-	Gas mixture CO ₂ /CH ₄ (50:50)	_																			
	I Iltom®	15	1.5-(1.8)	39.5-(43.1)	-	-	-	-	Single gas CO ₂ , CH ₄	_																			
6FDA- ODA:DAM 1:1	15	-	31.6-(42.8)	-	-	-	-	Gas mixture CO ₂ /CH ₄ (50:50)	_																				
	6FDA- ODA:DAM	20	54.1- (61.5)	23.5-(12.5)	-	-	-	-	Single gas CO ₂ , CH ₄	_																			
	1:1		-	23.6-(13.0)	-	-	-	-	Gas mixture CO ₂ /CH ₄ (50:50)	35	10																		
	6FDA- ODA:DAM	25	130.0- (123)	23.2-(18.1)	-	-	-	-	Single gas CO ₂ , CH ₄	_																			
	1:4													-				-	23.6-(19.1)					Gas mixture CO ₂ /CH ₄ (50:50)	_				
	6FDA- ODA:DAM	25	32.2- (76.4)	18.9-(8.9)					Single gas CO ₂ , CH ₄	_																			
	1:1 (APTMDS)		25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25 -	25 -	25 -	25 -	-	20.2-(8.8)	-	-	-	-	Gas mixture CO ₂ /CH ₄ (50:50)	
TIZI 107	M (¹ 10	5, 10, 20, 30	5, 10, 20, 30	5, 10, 20, 30	5, 10, 20, 30	7-(17)*	36-(64.6)	-	-	-	-	Single gas CO ₂ , CH ₄	25	2															
IKL-10/	Matrimid®	(20)	6-(15)*	24-(50.3)	-	-	-	-	Gas mixture CO ₂ /CH ₄ (20:80)	- 23	2																		
	XLPEO	10	-	-	380- (250)	22-(25)	-	-																					
CPO-27(Mg)	6FDA- TMPDA	10	-	-	650- (850)	14-(23)	-		Single gas CO ₂ , N ₂	25	2																		
	PDMS	20	-	-	3100- (2100)	9.5-(12)	-	-																					
Silica-(ZIF-8) core- shell	PSF	8, 12, 16, 20, 32 (32)	11.8- (73.1)*	10.2-(5.5)*	-	-	35.0- (224.1)*	3.4-(3.9)*	Gas mixture H ₂ /CO ₂ (50:50) CO ₂ /CH ₄ (10:90, <u>50:50</u> , 90:10)	35, 60, 90,120, <u>150</u>	2																		

										35, 60, 90, <u>120</u>	
		5, 10, 15, 20, 25, 30, 35 (35)	351- (1287)	8.3-(9.0)	351- (1287)	33.8-(32.3)	-	-	Single gas CO ₂ , O ₂ , N ₂ , CH ₄	RT	<u>2</u> , 6
ZIF-8	Pebax®	5, 10, 15, 20, 25, 30, 35, 40, 50 (25)	-	-	200- (900)*	66-(53)*	-	-	Gas mixture CO ₂ /N ₂ (10:90)	25	1.5
MIL-53	Matrimid®	5, 10, 15, 20 (15)	6.4- (12.4)	28.2-(51.8)	-	-	-	-	Single gas CO ₂ , CH ₄	35	3
ZIF-8	_		-	-	-	-	-	-	Gas mixture		
NH ₂ -MIL-53(Al)	PSF	8	-	-	-	-	-	-	H ₂ /CH ₄ (50:50) O ₂ / N ₂ (50:50)	35	2
[Cd ₂ 6FDA(H ₂ O)] ₂ 5 H ₂ O	6FDA- ODA	10	20.6- (37.8)	33.1-(44.8)	20.6- (37.8)	26.4-(35.1)	-	-	Single gas CO ₂ , N ₂ , CH ₄	25	2
MIL-53(Al)	PMP	5, 10, 15, 20, 25, 30, 35, 40 (30)	-	-	-	-	100- (365)*	0.11-(0.04)	Single gas H ₂ , CO ₂	30	2, 4, 6, <u>8</u>
ZIF-8 6FDA	6FDA-	3, 5, 7, 10, 15, 20, 30	1468.3- (2185.5)	22.6-(17.1)	1468.3- (2185.5)	25.4-(17.0)	-	-	Single gas CO ₂ , O ₂ , N ₂ , CH ₄	RT	<u>2</u> , 6
	Durene	(30)	-	-	-	-	-	-	Gas mixture CO ₂ /N ₂ (10:90)	25	1.5
NH ₂ -MIL-53(Al) + MSSs	PSF	16+0, 12+4, 8+8, 4+12 (4+12)	-	-	-		Gas mixture O ₂ /N ₂ (50:50)	35	2		
NH ₂ -MIL-53(Al) + MSSs	Matrimid®	8+8, 4+12 (4+12)	-	-	-	-	-	-	H ₂ /CH ₄ (50:50)		
NH ₂ -MIL-53(Al)	Matrimid®	15, 20, 25 (25)	4.8-(3.9)	100-(107)	-	-	-	-		<u>0</u> , 25, 35	<u>3</u> , 5, 9, 12
111 <u>2</u> 11112 35(111)	PSF	15, 20, 25 (25)	5.2-(5.4)	23.0-(27.5)	-	-	-	-	Gas mixture CO ₂ /CH ₄ (50:50)	35	3
NH ₂ -MIL-101(Al)	Matrimid®	8, 15, 25 (25)	4.8-(3.0)	100-(98)	-	-	-	-		<u>0</u> , 25, 35	<u>3</u> , 5, 9, 12
	PSF	8, 15, 25 (25)	5.2-(8.4)	23.0-(28.5)	-	-	-	-		35	3
7IE °	6FDA-	17 30 (17)							Single gas O ₂ , N ₂	35	2
211-0	DAM	17, 50 (17)	-	-	-	-	-	-	Gas mixture C ₃ H ₆ , C ₃ H ₈ (50:50)	35	1.4
ZIF-8 ZIF-7-8-(20) ZIF-8-ambz-(15)	Matrimid®	15	$\frac{9-(26)^{*}}{9-(20)^{*}}$	34.5-(35)* 34.5-(35.5)* 34.5-(36)*	-	-	-	-	Single gas CO ₂ , CH ₄	35	3.45
ZII -0-amoz-(13)			7-(12)	54.5-(50)	-	-	-	-			

ZIF-8-ambz-(30)	-		9-(11)*	34.5-(38.5)*	-	-	-	-			
ZIF-7-8-(20)		8-(19)*	8-(19)*	43-(41)*	-	-	-	-			<u>6.9</u> ,
ZIF-8-ambz-(15)	_		8-(14)*	43-(40)*	-		-		Gas mixture CO_2/CH_4 (50:50)	-	13.8, 27.6, 41.4
ZIF-8-ambz-(30)			8-(11)*	43-(42.5)*	-	-	-	-			
FeBTC	Matrimid®	10, 20, 30	14-(14)*	55-(35)*	-	-	-	-	Single gas CO ₂ , CH ₄	35	2-40 (<u>40</u>)
			14-(8.2)*	22-(28)*	-	-	-	-	Gas mixture CO ₂ /CH ₄ (50:50)	-	5
ZIF-8	PBI-BuI	10, 20, 30 (30)	2.3-(5.2)	57.0-(43.6)	2.3-(5.2)	26.8-(16.0)	6.2- (22.1)	2.7-(4.2)	– Single gas He, H ₂ , CO ₂ , N ₂ , CH ₄	35	20
	DMPBI- BuI	10, 20, 30 (30)	3.8- (53.9)	47.2-(15.7)	3.8- (53.9)	21.7-(11.3)	12.8- (127.5)	3.4-(2.4)			
	DBzPBI- BuI	10, 20 (20)	25.8- (89.8)	15.9-(11.6)	25.8- (89.8)	12.9-(14.3)	61.4- (180.3)	2.4-(2.0)			
NH ₂ -MIL-53(Al)	PMP	5, 10, 15, 20, 25, 30, 35, 40 (30)	96.5- (358.2)	8.8-(24.4)	-	-	-	_	Single gas CO ₂ , CH ₄ Gas mixture CO ₂ /CH ₄ (10:90)	30	2, 4, 6, <u>8</u>
			80.1- (339.5)	8.1-(22.9)	-	-	-	-			
MIL-53(Al)-ht	M-t-ii-l®	33.3, 37.5 (37.5)	8.4- (51)	39.4- (47.0)	8.4- (51)	33.6- (28.3)	25.7- (103)	3.1- (2.0)	 Single gas H₂, CO₂, O₂, N₂, CH₄ 	35	2
MIL-53(Al)-as	- Mau Innu	37.5	8.4- (40)	39.4- (90.1)	8.4- (40)	33.6- (95.2)	25.7- (66.0)	3.1-(1.7)			
c-MOF-5	PEI	5, 15, 25 (25)	1.7- (5.4)	18.7- (23.4)	1.7- (5.4)	16.8- (28.4)	10.1- (28.3)	6.0- (5.3)	Single gas H ₂ , CO ₂ , N ₂ , CH ₄	25	6
HKUST-1	Ultem®	10, 20, 30, 35, 40 (35)	1.1- (4.1)	36.8- (34.0)	1.1- (4.1)*	28.0-(28.0)*	-	-	Single gas CO ₂ , O ₂ , N ₂ , CH ₄	35	3.5
HKUST-1	ODPA- DAM (annealed 200 °C 24 h)	10, 15, 20, 30, 40, 50 (40)	47.7- (260.7)	29-(28)*	-	-	-	-			
	Matrimid® (annealed 200 °C 24 h)		7.6- (24.8)	37.5-(37.8)	-	-	-	-	Single gas CO ₂ , O ₂ , N ₂ , CH ₄	35	2
ZIF-8	ODPA- DAM (annealed 200 °C 24 h)	20	47.7- (134)*	29-(26)*	-	-	-	-	-		

ZIF-71	6FDA- durene	10, 20, 30 (20)	959- (4006)	16.4-(12.8)	959- (4006)	14.7-(12.9)	756- (2310)	0.8-(0.6)	Single gas H ₂ , CO ₂ , O ₂ , N ₂ , CH ₄ , C ₂ H ₄ , C ₂ H ₆ , C ₃ H ₆ , C ₃ H ₈	35	$\begin{array}{c} 3.5 \ (2 \\ for \\ C_2H_4, \\ C_2H_6, \\ C_3H_6 \\ and \\ C_3H_8) \end{array}$
		10, 20, 30 (20)	917- (3435)	21.8-(16.0)	-	-	-	-	Gas mixture CO ₂ /CH ₄ (50:50)	35	7
$\begin{array}{l} [Cu_2(Glu)_2(\mu\text{-}\\ bpa)]\cdot(CH_3CN) \end{array}$	– POZ	5, 10, 15, 20	-	-	28- (11.6)*	1-(55)*	-	-	- Single gas CO ₂ , N ₂	-	3.1
$\begin{array}{l} [Cu_2(Glu)_2(\mu \text{-}\\ bpp)] \cdot (C_3H_6O) \end{array}$		(15)	-	-	28- (16.0)*	1-(7)*	-	-			0.4
MIL-53(Al)	_		$14-(24)^*$	55-(66)*	-	-	-	-	– – Single gas CO ₂ , CH ₄	35	2.5, 5,
HKUST-1	– Matrimid® –	10, 20, 30 (30)	14-(18)*	55-(52)*		-	-	-			10, 12.5, 15, 20, 25, 30, <u>40</u>
MIL-53(Al)			9-(18)*	5-(40)*	-	-	-	-			2.5, 5,
ZIF-8 HKUST-1			<u>9-(20)</u> 9-(14)*	5-(37)* 5-(46)*	-	-	-	-	- Gas mixture CO ₂ /CH ₄ (50:50)		7.5, 10, 15, 20
	PSF	4.7	-	-	-	-	-	-		-	-
ZIF-11	PBI	4.7 16.1, 29.7, 39.5 (39.5)	-			-	17.2- (464.7)	5.0-(3.6)	Single gas H ₂ /CO ₂	RT	-
b-Cu 1,4-BDC		8	5.8-(5.2)	59.8-(45)	-	-	-	-			<u>3,</u> 4.5,
nc-Cu 1,4-BDC	_	8	5.8-(5.0)	59.8-(49.4)	-	-	-	-	-		6, 7.5
ns-Cu 1,4-BDC	Matrimid®	2, 4, 8 (8)	5.9-(2.8)	47.7-(88.2)	-	-	-	-	Gas mixture CO_2/CH_4 (50:50)	25	3, 4.5, 6, <u>7.5</u>
ns-Cu 2,6-NDC		8	5.8-(6.3)	59.8-(43.5)	-	-	-	-	-		3
ZIF-8 100 nm	- PSF	5	25.7- (15.6) (GPU)	19.4-(28.5)	_	-	_	-	Single and CO. CH		
ZIF-8 300 nm		rəf	5	25.7- (25.9) (GPU)	19.4-(5.8)	-	_	_	_	Singie gas CO ₂ , CH ₄	21

ZIF-8 500 nm			25.7- (28.1) (GPU)	19.4-(5.8)	-	-	-	-			
ZIF-8	PDMS	2.5, 5, 10, 15, 20	-	-	-	-	-	-	Single gas C ₃ H ₈ , N ₂	_	1.5
			-	-	-	-	-	-	Gas mixture C ₃ H ₈ /N ₂ (10:90, 20:80, 30:70, 40:60)	20, 27, 35, 45, 55	0.5, 1.5, 2.5, 3.5, 4.5

Results with * are calculated from graphs.