Supplementary Information for

Trifluoroacetic Acid Adduct of Trifluoroacetate-Bridged μ-Oxo-Tetranuclear Zinc Cluster, Zn₄(OCOCF₃)₆O•CF₃CO₂H: Synthesis under Mild Conditions and Catalytic Transesterification and Oxazoline Formation

Yukiko Hayashi,^a Takashi Ohshima,^{*b} Yuka Fujii,^a Yoshimasa Matsushima,^c and Kazushi Mashima^{*a}

 ^a Department of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
^b Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan
^c Corporate Research and Development Division, Takasago International Corporation, 1-4-11 Nishi-yawata, Hiratsuka, Kanagawa, 254-0073, Japan

E-mail: ohshima@phar.kyushu-u.ac.jp, mashima@chem.es.osaka-u.ac.jp

Table of Contents

Materials and methods	S-2
Characterization data for the isolated compounds	S-5
References for the Supporting Information	S-7
Cartesian Coordinates	S-8

Materials and methods

General: Nuclear magnetic resonance (¹H NMR, ¹³C NMR, and ¹⁹F NMR) spectra were measured on a Varian MERCURY300-C/H spectrometer operating at 300 MHz (¹H NMR), 75 MHz (¹³C NMR), and 282 MHz (¹⁹F NMR), in 5¢ mm NMR tubes and Bruker Avace 400 Spectrometer operating at 400 MHz (¹H NMR) and 100 MHz (¹³C NMR), in 5¢ mm NMR tubes. All ¹H NMR chemical shifts were reported in ppm relative to internal references of TMS at δ 0.00. All ^{13}C NMR chemical shifts were reported in ppm relative to carbon resonance in chloroform- d_1 at δ 77.00, THF- d_8 at δ 25.20. The ¹⁹F NMR chemical shifts were reported in ppm relative to external reference of α, α, α -trifluorotoluene at δ -63.90. Low and high resolution mass spectra were recorded by JEOL JMS-700. IR spectra were recorded on Jasco FT/IR-410 spectrometer. Elemental analyses were conducted by Perkin-Elmer 2400II at the Faculty of Engineering Science, Osaka University. GC analyses were recorded on a Shimadzu GC-14A gas chromatograph with J&W Scientific DB-5 column. Enantiomeric excess was determined by chiral HPLC analysis with DAICEL CHIRALCEL OD-H column using a JASCO PU-2089 PLUS pump and PU-2075 PLUS UV/VIS detector. Optical rotation measurements were performed at 589 nm, on Atago AP-300 polarimeter. All catalytic reactions were carried out by the standard Schlenk techniques under an argon atmosphere. Diisopropyl ether was distilled over benzophenone ketyl. Ethyl acetate was distilled over P₂O₅. Chlorobenzene was distilled over calcium hydride. Zn(OCOCF₃)₂·xH₂O was purchased from Sigma-Aldrich.

Preparation of tetranuclear zinc cluster 1a. Under an inert atmosphere of argon, zinc bistrifluoroacetate hydrate, Zn(OCOCF₃)₂·xH₂O, (845 mg, 2.73 mmol as a monohydrate) was heated at 120 °C for 4 h under reduced pressure (<0.02 mmHg) to remove water. The resulting dried powder was heated at 360 °C on a sand bath to sublime a μ -oxo-tetranuclear zinc cluster **1a**, which was mechanically collected and stored under an inert atmosphere (545 mg, 84%). **1a**: white solid; IR (nujol NaCl, ν/cm^{-1}) 2923, 1701, 1202, 856, 796, 730; ¹³C NMR (75 MHz, THF-*d*₈, 35 °C) δ 117.0 (q, *J*_{C-F} = 288 Hz, CF₃COO), 163.8 (q, *J*_{C-F} = 38 Hz, CF₃COO); ¹⁹F NMR (282 MHz, THF-*d*₈, 35 °C) δ -78.88 (s); MS (ESI) *m/z* (relative intensity) 933 ([M⁺ + 2H₂O + H], 3); Elemental Anal. calcd. for C₁₂F₁₈O₁₃Zn₄: C15.08% found C 15.52%.

Preparation of the compound A (the mixture of tetranuclear zinc cluster 1a and its trifluoroacetate adduct 3) by Sublimation at 160 °C. Under an inert atmosphere of nitrogen, $Zn(OCOCF_3)_2 \cdot xH_2O$ (30.3 g) was heated at 120 °C for 1.5 h under reduced pressure (<0.02 mmHg), and then the reaction temperature was gradually raised to 160 °C. A white solid was sublimated during maintaining the temperature at 160 °C for 30 min. The starting mononuclear zinc material

was completely consumed within 6 h. The resulting white solid was collected and stored under an inert atmosphere (24.7 g, 98% yield based on zinc). The zinc content of the compound **A** was determined to be 25.2% by titration with EDTA solution using XO indicator. Thus, the compound **A** was a mixture of **1a** and its trifluoroacetate adduct **3** in 28:72 ratio. White solid; IR (KBr) 1708, 1629, 1439, 1203, 851, 799, 729, 520, 427; ¹H NMR (500 MHz, DMSO-*d*₆, 47 °C) δ 10.25 (br-s, CF₃CO₂*H*); ¹³C NMR (125 MHz, DMSO-*d*₆, 47 °C) δ 116.6 (q, *J*_{C-F} = 294.72 Hz, *C*F₃CO), 158.87 (q, *J*_{C-F} = 33.96 Hz, CF₃CO); ¹⁹F NMR (470 MHz, DMSO-*d*₆, 47 °C) δ -74.27 (s); MS (ESI) *m/z* 1062 [Zn₄(OCOCF₃)₆O + CF₃CO₂⁻]; HRMS (ESI) *m/z* calcd. for C₁₄F₂₁O₁₅Zn₄ 1062.6073 found 1062.6074.

Preparation of the compound B (the mixture of tetranuclear zinc cluster 1 and its trifluoroacetate adduct 2) in small scale by refluxing in toluene. $Zn(OCOCF_3)_2 \cdot xH_2O(9.70 \text{ g})$ was dissolved in 270 mL of toluene at 60 °C, and then the solution was refluxed. The fraction contained toluene and water after refluxing for 30 min showed strong acidity due to CF_3CO_2H (pH \approx 1). After refluxing the solution for 4 h, the solution became turbid due to the formation of an insoluble clusters. The product was filtrated after cooling to room temperature, washed with toluene, and dried in vacuum for 2 h to remove residual solvent to give white solid (6.37 g, 93% yield based on zinc). The zinc content of the compound B was determined to be 25.6% by titration with EDTA solution using XO indicator. Thus, the compound B was a mixture of 1 and its trifluoroacetate adduct 2 in 41:59 ratio.

Preparation of the compound B (the mixture of tetranuclear zinc cluster 1a and its trifluoroacetate adduct 3) in large scale by refluxing in toluene. $Zn(OCOCF_3)_2 \cdot xH_2O$ (Zn content 18wt%, H₂O content 19wt%, 2.00 kg) was dissolved in 7 L of toluene at 60 °C under N₂ atmosphere, and then the solution was refluxed. After refluxing the solution for 4 h, about 4 L of an azeotropic mixture of toluene, water, and TFA was removed form the reaction mixture and the solution became turbid due to the formation of an insoluble clusters. The product was filtrated after cooling to room temperature, washed with toluene, and dried in vacuum (<5 mmHg) at 75°C to remove residual solvent to give white solid (1.08 kg). The zinc content of the compound **B** was determined to be 25.5% by titration with EDTA solution using XO indicator.

General procedure for the transesterification catalyzed by the zinc clusters. Catalyst (23.8 mg, 0.0250 mmol, calculated as $Zn_4(OCOCF_3)_6O$), methyl ester 4 (2.0 mmol), and alcohol 5 (2.4 mmol) in diisopropyl ether (3.4 mL, 0.6 M) were refluxed for periodic time under an argon atmosphere. The resulting mixture was concentrated and purified by silica gel column chromatography.

General procedure for the acetylation of alcohol 5b catalyzed by the zinc clusters. Catalyst (23.8 mg, 0.0250 mmol, calculated as $Zn_4(OCOCF_3)_6O$), alcohol 5b (2.0 mmol), and ethyl acetate (3.4 mL, 0.6 M) were refluxed for 18 h under an argon atmosphere. The resulting mixture was concentrated and purified by silica gel column chromatography.

General procedure for the oxazoline formation catalyzed by the zinc clusters. Catalyst (35.8 mg, 0.0375 mmol, calculated as $Zn_4(OCOCF_3)_6O$), methyl benzoate (4c, 1.5 mmol), and (*S*)-valinol (5c, 1.8 mmol) in chlorobenzene (2.5 mL) were refluxed for 12 h under an argon atmosphere. The resulting mixture was concentrated and purified by silica gel column chromatography.

Computational Methods

Geometry optimizations and energies were calculated with the Gaussian 03 package (Revision D.01)^{S-1} using B3LYP^{S-2} hybrid density functional theory with LANL2DZ basis set for Zn and 6-31G(d,p) basis set for all other atoms.

Characterization data for the isolated compounds

Butyl N-benzyloxycalbonylglycinoate (Cbz-Gly-OⁿBu) (9aa)

Purified by flush column chromatography (silica gel,

Hexane/EtOAc = 10/1 to 4/1); colorless oil; IR (CHCl₃, ν/cm^{-1}) 3441, 3379, 3024, 2963, 2878, 1744, 1705, 1528, 1512, 1458, 1404, 1358, 1273, 1188, 1057, 995; ¹H NMR (400 MHz, CDCl₃, 35 °C) & 7.36-7.25 (m, 4H, aromatic), 5.22 (br s, 1H, NH), 5.13 (s, 2H, PhCH₂), 4.16 (t, J = 6.7 Hz, 2H, OCH_2CH_2), 3,97 (d, J = 5.4 Hz, 2H, NHC H_2), 1.66-1.56 (m, 2H, methylene), 1.42-1.33 (m, 2H, *methylene*), 0.93 (t, J = 7.4 Hz, 3H, CH_3); ¹³C NMR (100 MHz, CDCl₃, 35 °C) δ 170.0, 156.2, 136.3, 128.4, 128.1, 128.0, 67.0, 65.2, 42.7, 30.5, 18.9, 13.5; MS (EI) *m/z* (relative intensity) 265 ([M⁺], 34), 108 (89), 91 (100); HRMS (EI) *m/z* calcd. for C₁₄H₁₉NO₄ 265.1314 found 265.1316.

Butyl N-9-fluorenylmethyloxycalbonylglycinoate

(Fmoc-Gly- O^n Bu) (9ba)

Purified by flush column chromatography (silica gel, Hexane/EtOAc = 10/1 to 4/1); colorless oil; IR (CHCl₃, v/cm⁻¹) 3441, 3063, 3024, 2963, 2878, 1736, 1721,

1520, 1451, 1404, 1358, 1204, 1057, 1003; ¹H NMR (400 MHz, CDCl₃, 35 °C) δ 7.75 (d, *J* = 7.4 Hz, 2H, fluorenvl), 7.59 (br d, J = 7.4 Hz, 2H, fluorenvl), 7.38 (t, J = 7.4 Hz, 2H, fluorenvl), 7.29 (dt, J =1.0, 7.4 Hz, 2H, *fluorenyl*), 5.32 (br s, 1H, NH), 4.40 (d, J = 7.1 Hz, 2H, fluorenylCH₂), 4.22 (t, J =7.1 Hz, 1H, fluorenyl), 4.16 (t, J = 6.7 Hz, 2H, OCH₂CH₂), 3.97 (d, J = 5.2 Hz, 2H, NHCH₂), 1.66-1.59 (m, 2H, methylene), 1.42-1.32 (m, 2H, methylene), 0.92 (t, J = 7.4 Hz, 3H, CH_3); ¹³C NMR (100 MHz, CDCl₃, 35 °C) & 170.0, 156.2, 143.8, 141.3, 127.7, 127.0, 125.0, 119.9, 67.2, 65.3, 47.1, 42.8, 30.5, 19.0, 13.6; MS (EI) m/z (relative intensity) 353 ([M⁺], 1), 178 (88), 165 (25), 71 (4); HRMS (EI) m/z calcd. for C₂₁H₂₃NO₄ 353.1627 found 353.1643.

(S)-butyl N-tert-butoxycalbonylphenylglycinoate

(Boc-Phg-OⁿBu) (9ca)

Purified by flush column chromatography (silica gel. Hexane/EtOAc = 15/1 to 4/1; colorless oil; IR (CHCl₃, v/cm^{-1}) 3441, 3063, 3024, 2963, 2940, 2878, 1805, 1721, 1505, 1474,

1366, 1319, 1242, 1165, 1126, 1057, 1026; ¹H NMR (400 MHz, CDCl₃, 35 °C) & 7.37-7.29 (m, 5H, aromatic), 5.57 (br s, 1H, NH), 5.30 (d, 1H, J = 5.3 Hz, NHCH), 4.11 (dt, J = 6.6, 1.6 Hz, 2H, OCH₂CH₂), 1.58-1.51 (m, 2H, methylene), 1.43 (s, 9H, C(CH₃)₃), 1.29-1.20 (m, 2H, methylene),

0.84 (t, J = 7.4 Hz, 3H, CH_3); ¹³C NMR (100 MHz, CDCl₃, 35 °C) δ 171.1, 154.8, 137.2, 128.7, 128.2, 127.0, 80.0, 65.5, 57.7, 30.4, 28.3, 18.8, 13.5; MS (EI) *m/z* (relative intensity) 307 ([M⁺], 1), 206 (40), 150 (97), 106 (100), 57 (77); HRMS (ESI) *m/z* calcd. for C₁₇H₂₅NO₄Na 330.1675 found 330.1699; [α]₅₈₉²⁴ +103.2 (*c* 0.96 in CHCl₃). The enantiomeric excess (%ee) was determined to be 95% by HPLC using ChiralPAK OD-H column (5% *i*-PrOH/ hexanes, 1 mL/min, 254 nm): t_R (minor, 5.2 min), t_R (major, 5.5 min).

Spectral data of **6aa**, ^{S-3} **6ba**, ^{S-3} **6ac**, ^{S-3} **7**, ^{S-4} and **12**^{S-5} were described in previous reports.

References for the Supplementary Information

- S-1 Gaussian 03, Revision D.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Pittsburgh PA, 2003.
- S-2 (a) A. D. Becke, J. Chem. Phys., 1993, 98, 5648; (b) C. Lee, W. Yang, R. G. Parr, Phys. Rev. B, 1988, 37, 785.
- S-3 T. Iwasaki, Y. Maegawa, Y. Hayashi, T. Ohshima and K. Mashima, J. Org. Chem., 2008, 73, 5147.
- S-4 T. Iwasaki, Y. Maegawa, Y. Hayashi, T. Ohshima and K. Mashima, *Synlett*, 2009, 1659.
- S-5 T. Ohshima, T. Iwasaki and K. Mashima, Chem. Commun., 2006, 2711.

Cartesian Coordinates

TFA

Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Z	
1	8	 0	1.687718	-2.242156	3.240174	
2	6	0	1.890031	-0.668409	5.079307	
3	6	0	1.853120	-2.063208	4.417723	
4	8	0	2.030953	-3.014919	5.344681	
5	9	0	0.925546	-0.569909	6.010376	
6	9	0	1.702898	0.281120	4.162189	
7	9	0	3.078133	-0.468412	5.675722	
8	1	0	2.000735	-3.871762	4.885008	

Zn₄(OCOCF₃)₆O

Center	Atomic	Atomic	Coc	ordinates (A	ngstroms)	
Number	Number	Туре	Х	Y	Z	
1	6	0	2.601258	-0.412494	2.452787	
2	8	0	2.803652	0.560707	1.683557	
3	30	0	1.689232	1.301064	0.193762	
4	8	0	1.268949	3.213101	0.605759	
5	6	0	0.164195	3.801215	0.731982	
6	8	0	-0.991944	3.317257	0.636799	
7	30	0	-1.603792	1.447576	0.263843	
8	8	0	-2.703123	0.810625	1.811474	
9	6	0	-2.551415	-0.176098	2.575867	
10	8	0	-1.632833	-1.034643	2.567586	
11	30	0	-0.046070	-1.240527	1.366466	
12	8	0	-0.157776	-3.029746	0.474944	
13	6	0	-0.191054	-3.333813	-0.744424	
14	8	0	-0.175121	-2.565435	-1.739621	
15	30	0	-0.090591	-0.569800	-1.857576	
16	8	0	1.536415	-0.062115	-2.906908	
17	6	0	2.529044	0.641156	-2.589650	
18	8	0	2.754971	1.223969	-1.498419	
19	8	0	-0.013547	0.236630	-0.009688	
20	8	0	1.614188	-1.191385	2.481228	
21	8	0	-2.756636	1.465341	-1.372004	
22	6	0	-2.629978	0.865397	-2.469893	
23	8	0	-1.713200	0.083903	-2.829697	
24	6	0	3.678770	-0.668295	3.536527	
25	6	0	-3.776221	1.079156	-3.490352	
26	6	0	3.642464	0.772311	-3.659303	
27	6	0	0.253721	5.325050	0.998396	
28	6	0	-0.204797	-4.849410	-1.066405	
29	6	0	-3.662293	-0.391678	3.634448	
30	9	0	-3.340322	0.926494	-4.744571	

31	9	0	-4.247938	0.763819	3.962992	
32	9	0	4.220057	1.977298	-3.600520	
33	9	0	4.846302	-0.110924	3.205244	
34	9	0	1.242701	5.594360	1.859387	
35	9	0	4.576490	-0.166060	-3.415712	
36	9	0	3.157814	0.585926	-4.890384	
37	9	0	3.254811	-0.127767	4.694052	
38	9	0	3.863038	-1.981300	3.718345	
39	9	0	0.514321	5.946880	-0.166359	
40	9	0	-0.890711	5.803332	1.493361	
41	9	0	-4.731924	0.161685	-3.250395	
42	9	0	-4.310898	2.298084	-3.364470	
43	9	0	-4.591700	-1.213355	3.111278	
44	9	0	-3.166304	-0.954515	4.741301	
45	9	0	1.068173	-5.261229	-1.217598	
46	9	0	-0.767138	-5.548884	-0.076341	
47	9	0	-0.871638	-5.092514	-2.199654	

Zn₄(OCOCF₃)₆O•CF₃CO₂H

Center	iter Atomic A		Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Z	
1	6	0	4.475114	0.274170	2.749955	
2	8	0	2.286995	-0.340276	2.100895	
3	30	0	1.871872	1.671059	-0.413928	
4	8	0	1.429947	3.607705	-0.124080	
5	6	0	0.345803	4.160162	0.193613	
6	8	0	-0.778269	3.626828	0.366857	
7	30	0	-1.331880	1.706730	0.182946	
8	8	0	-2.338198	1.239459	1.854373	
9	6	0	-2.218004	0.111897	2.396966	
10	8	0	-1.402029	-0.799290	2.119564	
11	30	0	0.484513	-0.902462	1.333424	
12	8	0	0.672505	-2.674991	0.379301	
13	6	0	0.356835	-3.099912	-0.757808	
14	8	0	-0.022040	-2.442945	-1.761072	
15	30	0	-0.089594	-0.451821	-1.924266	
16	8	0	1.278148	0.049119	-3.307828	
17	6	0	2.264704	0.824848	-3.238258	
18	8	0	2.646925	1.512101	-2.257787	
19	8	0	0.245938	0.508978	-0.182961	
20	8	0	0.639598	-2.248268	3.220383	
21	8	0	-2.670660	1.618576	-1.311073	
22	6	0	-2.716728	0.878880	-2.327203	
23	8	0	-1.874370	0.029491	-2.710230	
24	6	0	-3.995922	1.033421	-3.187225	
25	6	0	3.147236	0.906543	-4.508965	
26	6	0	0.436553	5.691671	0.407963	
27	6	0	0.489681	-4.631998	-0.944522	
28	6	0	-3.219225	-0.225280	3.528994	
29	6	0	0.650168	-0.671386	5.088299	

30	6	0	0.640468	-2.064871	4.418215	
31	8	0	0.669532	-3.022161	5.330764	
32	6	0	3.249901	0.411308	1.812030	
33	8	0	3.341872	1.241146	0.873843	
34	9	0	5.438271	1.146603	2.450915	
35	9	0	4.974136	-0.971262	2.650767	
36	9	0	4.090755	0.475364	4.023337	
37	9	0	-3.890771	0.390842	-4.352830	
38	9	0	-5.040197	0.525621	-2.507632	
39	9	0	-4.233502	2.330421	-3.430340	
40	9	0	3.775447	2.084017	-4.587451	
41	9	0	4.071576	-0.071261	-4.448905	
42	9	0	2.414817	0.735051	-5.614980	
43	9	0	1.234724	5.941310	1.460969	
44	9	0	0.967195	6.272494	-0.678955	
45	9	0	-0.761447	6.232501	0.641667	
46	9	0	1.795595	-4.947323	-1.030861	
47	9	0	-0.033809	-5.276961	0.110135	
48	9	0	-0.126271	-5.054108	-2.051020	
49	9	0	-3.797423	0.867589	4.028607	
50	9	0	-4.173143	-1.039458	3.044922	
51	9	0	-2.584999	-0.868386	4.530078	
52	9	0	-0.237387	-0.616377	6.083182	
53	9	0	0.346451	0.277406	4.185807	
54	9	0	1.871720	-0.425298	5.574718	
55	1	0	0.692768	-3.881262	4.871838	