Experimental

General

The materials procured from Sigma-Aldrich and Merck, were used without further purification. IR spectra were obtained on Perkin Elmer FT-IR spectrometer spectrum-2000 using potassium bromide pellets or as liquid films between two sodium chloride pellets. Mass spectra were recorded in a TOF-mass spectrometer model no. KC455. ¹H NMR, ¹³C NMR and ³¹P NMR spectra (300 MHz) were recorded on a Bruker spectrospin 300 MHz. All NMR samples were run in CDCl₃ and chemical shifts are expressed as ppm relative to internal Me₄Si. Column Chromatography was carried out with the use of silica gel (100-200 mesh), purchased from Sisco Research Laboratories (SRL) Pvt. Ltd. Mumbai, India.

Typical Procedure for the synthesis of α-amino phosphonates

In a 50 ml round bottom flask, the mixture of aldehyde (1 mmol), amine (1.1 mmol) and diethyl phosphate (1 mmol) in acetonitrile (2 ml) were stirred at 50 °C under a nitrogen atmosphere. To this resulted reaction mixture, Cu-nanoparticles (10 mol %) were added. The progress of reaction was continuously monitored through TLC. On the completion of reaction, as indicated by TLC examination, an excess of water was added to the reaction mixture. The crude product was extracted with ethyl acetate and dried over anhydrous Na₂SO₄. Solvent was removed under vacuo. Subsequently, the reaction mixture was purified by column chromatography using silica gel and hexane (90): ethyl acetate (10) as an eluent to get pure α -amino phosphonates (Table 1, entry 1-7). All the products were unambiguously established on the basis of their spectral analysis (IR, ¹H NMR, ¹³C NMR, ³¹P NMR and mass spectra).

1. IR v_{max} (KBr) 3295 (s, NH), 1236 (s, P=O). ¹H NMR (300 MHz, TMS, CDCl₃): δ 1.09 (3H, t, j = 7.0 Hz, -OCH₂CH₃), 1.24 (3H, t, j = 7.0 Hz, -OCH₂CH₃), 3.64-3.70 (1H, t, j = 6.9, OCH₂CH₃), 3.90-3.93 (1H, t, j = 6.9, -OCH₂CH₃), 4.09-4.13 (2H, t, j = 6.9, -OCH₂CH₃), 4.70 (1H, d, j = 23.7, CHP), 6.57-7.48 (10H, m, φ). ¹³C NMR (300 MHz, TMS, CDCl₃): 16.15 (dd, ³j_{c,p} = 5.8 Hz, OCH₂CH₃), 56.10 (d, ¹j_{c,p} = 150.4 Hz, CH), 63.05 (d, ²j_{c,p} = 5.8 Hz, OCH₂CH₃), 113.67, 118.18, 127.73-128.42, 135.77, 146.08-146.27 (C₆H₆). ¹P NMR (300 MHz, TMS, CDCl₃): 22.51. m/z (GC-MS, HRMS): 318.92 (M⁺).

2. IR v_{max} (KBr) 3288 (s, NH), 1235 (s, P=O). ¹H NMR (300 MHz, TMS, CDCl₃): δ 0.89 (3H, t, j = 6.68 Hz, -OCH₂CH₃), 1.25 (3H, t, j = 6.68 Hz, -OCH₂CH₃), 3.86-4.71 (4H, m, -OCH₂CH₃), 4.90 (1H, d, j =

25.2, CHP), 6.52 (2H, d, j = 7.7 Hz, ϕ), 6.73 (1H, t, j = 7.0 Hz, ϕ), 7.11 (2H, t, j = 7.0 Hz, ϕ), 7.64-7.67(2H, dd, j = 8.2 Hz, ϕ), 8.18 (2H, d, j = 7.7 Hz, ϕ). m/z (GC-MS, HRMS): 364.09 (M⁺).

3. IR v_{max} (KBr) 3276 (s, NH), 1222 (s, P=O). ¹H NMR (300 MHz, TMS, CDCl₃): δ 1.13 (3H, t, j = 7.0 Hz, -OCH₂CH₃), 1.25 (3H, t, j = 7.0 Hz, OCH₂CH₃), 3.77 (3H, s, ArOCH₃), 3.65-4.17 (4H, m, OCH₂CH₃), 4.66 (1H, d, j = 23.7, CHP), 6.57 (2H, d, j = 7.2 Hz, φ), 6.60 (1H, t, j = 7.6 Hz, φ), 6.84 (2H, d, j = 7.2 Hz, φ), 7.10 (2H, t, j = 7.2 Hz φ), 7.38 (2H, dd, j = 7.4 Hz, φ). ¹³C NMR (300 MHz, TMS, CDCl₃): 16.37 (dd, ³j_{c,p} = 5.7 Hz, OCH₂CH₃), 54.19-55.19 (d, ¹j_{c,p} = 150.4 Hz, CH), 56.35 (s, OCH₃), 63.16 (d, ²j_{c,p} = 5.7 Hz, OCH₂CH₃), 113.86, 114.03, 118.31, 127.65, 128.95-129.43, 146.23-146.43, 159.28 (C₆H₆). m/z (GC-MS, HRMS): 349.09 (M⁺).

4. IR v_{max} (KBr) 3571 (s, NH), 1231 (s, P=O). ¹H NMR (300 MHz, TMS, CDCl₃): δ 1.07 (3H, t, j = 7.0 Hz, -OCH₂CH₃), 1.23 (3H, t, j = 7.0 Hz, -OCH₂CH₃), 2.15 (3H, s, ArOCH₃), 3.61-4.10 (4H, m, -OCH₂CH₃), 4.74 (1H, d, j = 23.7, CHP), 6.39-6.46 (4H, m, φ), 6.92 (1H, t, j = 7.2 Hz, φ), 7.25 (2H, dd, j = 7.7 Hz, φ), 7.47 (2H, d, j = 7.0 Hz, φ). ¹³C NMR (300 MHz, TMS, CDCl₃): 15.36-15.68 (dd, ³j_{c,p} = 5.8 Hz, OCH₂CH₃), 20.75 (s, CH₃), 53.96-55.96 (d, ¹j_{c,p} = 152.4 Hz, CH), 62.27-62.43 (t, ²j_{c,p} = 5.8 Hz, OCH₂CH₃), 109.56-109.97, 113.91, 117.32-118.27, 126.99-128.18, 135.44-137.86, 145.68-145.87 (C₆H₆). m/z (GC-MS, HRMS): 334.10 (M⁺).

5. IR v_{max} (KBr) 3296 (s, NH), 1231 (s, P=O). ¹H NMR (300 MHz, TMS, CDCl₃): δ 1.10 (3H, t, j = 7.0 Hz, -OCH₂CH₃), 1.27 (3H, t, j = 7.0 Hz, -OCH₂CH₃), 3.83 (3H, s, ArOCH₃), 3.60-4.23 (4H, m, -OCH₂CH₃), 4.84 (1H, d, j = 23.7, CHP), 6.92 (2H, d, j = 7.0 Hz, ϕ), 7.25 (2H, d, j = 7.0 Hz, ϕ), 7.46 (1H, t, j = 6.9 Hz, ϕ), 7.89 (2H, dd, j = 7.5 Hz, ϕ), 8.48 (2H, d, j = 7.8 Hz, ϕ). m/z (GC-MS, HRMS): 350.09 (M⁺).

6. IR v_{max} (KBr) 3295 (s, NH), 1236 (s, P=O). ¹H NMR (300 MHz, TMS, CDCl₃): δ 1.18 (3H, t, j = 7.0 Hz, -OCH₂CH₃), 1.25 (3H, t, j = 7.0 Hz, -OCH₂CH₃), 3.71-4.18 (4H, m, -OCH₂CH₃), 4.73(1H, d, j = 23.7, CHP), 4.83 (1H, br, NH), 5.87 (2H, s, CH₂), 6.57-6.91 (5H, m, φ), 6.97 (1H, s, φ), 7.09 (1H, t, j = 6.9 Hz, φ). ¹³C NMR (300 MHz, TMS, CDCl₃): 16.06-16.28 (dd, ³j_{c,p} = 5.8 Hz, OCH₂CH₃), 54.52-56.53 (d, ¹j_{c,p} = 154.04 Hz, CH), 63.01-63.10 (d, ²j_{c,p} = 5.8 Hz, OCH₂CH₃), 100.92 (s, CH₂), 108.00-108.08, 113.67, 118.21, 121.14-121.22, 128.95-129.54, 146.01-146.20, 147.15-147.80 (C₆H₆). ¹P NMR (300 MHz, TMS, CDCl₃): 360.74(M⁺).

7. IR v_{max} (KBr) 3456 (s, NH), 1224 (s, P=O). ¹H NMR (300 MHz, TMS, CDCl₃): δ 1.18 (3H, t, j = 7.0 Hz, -OCH₂CH₃), 1.23 (3H, t, j = 6.96, Hz -OCH₂CH₃), 3.60-4.23 (4H, m, -OCH₂CH₃), 4.75 (1H, d, j = 23.7, CHP), 4.84 (1H, d, CHP), 7.11 (1H, s), 6.57-7.10 (10H, m, φ), 7.90 (1H, s). m/z (GC-MS, HRMS): 353.09 (M⁺).

Crystallographic data for the structural analysis have been deposited with in Cambridge Crystallographic Data Centre as supplementary publication number **CCDC 761136** for compound **3f** .Copies of this information may be obtained free of Charge from the Director, CCDC, 12 Union road, Cambridge, CB2, IEZ, UK (E-mail:linstead@ccdc.cam.ac.uk or deposit @ccdc.cam .ac; Fax:44 1223 336033)

Table 1. Crystal data and structure refinement for 3f.

Identification code	shelxl
Empirical formula	C18 H22 N O5 P
Formula weight	363.34

Temperature	298(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	C 2/c	
Unit cell dimensions	a = 22.1091(11) Å	$\alpha = 90^{\circ}$.
	b = 10.4184(3) Å	β=118.495(6)°.
	c = 18.2639(8) Å	$\gamma = 90^{\circ}.$
Volume	3697.3(3) Å ³	
Z	8	
Density (calculated)	1.305 Mg/m ³	
Absorption coefficient	0.176 mm ⁻¹	
F(000)	1536	
Crystal size	0.24 x 0.18 x 0.12 mm ³	
Theta range for data collection	2.97 to 25.99°.	
Index ranges	-27<=h<=25, -12<=k<=10, -22	2<=l<=22
Reflections collected	8459	
Independent reflections	3616 [R(int) = 0.0157]	
Completeness to theta = 25.99°	99.8 %	
Absorption correction	Semi-empirical from equivalent	nts
Max. and min. transmission	0.8728 and 0.8145	
Refinement method	Full-matrix least-squares on F	2
Data / restraints / parameters	3616 / 23 / 232	
Goodness-of-fit on F ²	1.071	

Final R indices [I>2sigma(I)]	R1 = 0.0559, wR2 = 0.1791
R indices (all data)	R1 = 0.0728, wR2 = 0.1892
Largest diff. peak and hole	0.758 and -0.491 e.Å ⁻³

Table 2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10^3)

for	1.	U(eq)	is c	lefined	as one	third	of t	the	trace	of t	the	orthogo	nalized	Uij	tensor.
		- \ 1/													

	Х	у	Z	U(eq)
C(1)	6384(1)	3486(2)	6829(1)	35(1)
C(2)	6815(1)	2420(2)	7124(2)	43(1)
C(3)	7413(2)	2488(3)	7888(2)	54(1)
C(4)	7591(1)	3590(3)	8353(2)	55(1)
C(5)	7174(1)	4658(3)	8051(2)	49(1)
C(6)	6578(1)	4613(3)	7302(2)	41(1)
C(7)	5573(1)	2423(2)	5498(2)	35(1)
C(8)	5943(1)	2419(2)	4976(2)	37(1)
C(9)	5942(2)	3510(3)	4536(2)	53(1)
C(10)	6263(2)	3529(3)	4041(2)	62(1)
C(11)	6604(2)	2440(3)	4027(2)	51(1)
C(12)	7254(2)	993(4)	3844(2)	70(1)
C(13)	6608(1)	1359(3)	4455(2)	44(1)
C(14)	6282(1)	1301(2)	4933(2)	41(1)
C(15)	4447(3)	450(4)	3003(2)	94(1)
C(16)	4311(2)	1611(3)	3361(2)	74(1)
N(1)	5757(1)	3472(2)	6091(1)	40(1)
O(1)	6977(1)	405(2)	4324(2)	72(1)

O(2)	6957(1)	2229(2)	3591(2)	67(1)
O(3)	4472(1)	1355(2)	4216(1)	48(1)
O(5)	4389(1)	3758(2)	4490(1)	52(1)
P(1)	4642(1)	2486(1)	4851(1)	38(1)
O(4)	4342(1)	1931(2)	5409(1)	53(1)
C(17)	3993(3)	2703(5)	5740(4)	123(2)
C(18A)	4359(8)	2784(17)	6660(4)	164(5)
C(18B)	3974(14)	2231(19)	6493(10)	164(5)

Table 3. Bond lengths [Å] and angles [°] for 1.

C(1)-C(2)	1.395(4)
C(1)-N(1)	1.398(3)
C(1)-C(6)	1.398(3)
C(2)-C(3)	1.392(4)
C(2)-H(2)	0.9300
C(3)-C(4)	1.369(4)
C(3)-H(3)	0.9300
C(4)-C(5)	1.382(4)
C(4)-H(4)	0.9300
C(5)-C(6)	1.375(4)
C(5)-H(5)	0.9300
C(6)-H(6)	0.9300
C(7)-N(1)	1.453(3)
C(7)-C(8)	1.523(3)
C(7)-P(1)	1.820(2)
C(7)-H(7)	0.9800
C(8)-C(9)	1.391(4)
C(8)-C(14)	1.407(3)
C(9)-C(10)	1.389(4)
C(9)-H(9)	0.9300
C(10)-C(11)	1.370(4)

C(10)-H(10)	0.9300
C(11)-C(13)	1.368(4)
C(11)-O(2)	1.374(3)
C(12)-O(2)	1.419(4)
C(12)-O(1)	1.427(4)
C(12)-H(12A)	0.9700
C(12)-H(12B)	0.9700
C(13)-C(14)	1.374(4)
C(13)-O(1)	1.377(3)
C(14)-H(14)	0.9300
C(15)-C(16)	1.473(3)
C(15)-H(15A)	0.9600
C(15)-H(15B)	0.9600
С(15)-Н(15С)	0.9600
C(16)-O(3)	1.451(4)
C(16)-H(16A)	0.9700
C(16)-H(16B)	0.9700
N(1)-H(1)	0.8600
O(3)-P(1)	1.5687(19)
O(5)-P(1)	1.4678(19)
P(1)-O(4)	1.5681(19)
O(4)-C(17)	1.434(4)
C(17)-C(18B)	1.479(3)

C(17)-C(18A)	1.479(3)
C(17)-H(17A)	0.9700
C(17)-H(17B)	0.9700
C(18A)-H(18A)	0.9600
C(18A)-H(18B)	0.9600
C(18A)-H(18C)	0.9600
C(18B)-H(18D)	0.9600
C(18B)-H(18E)	0.9600

C(18B)-H(18F) 0.9600

C(2)-C(1)-N(1)	123.0(2)
C(2)-C(1)-C(6)	118.6(2)
N(1)-C(1)-C(6)	118.4(2)
C(3)-C(2)-C(1)	119.6(2)
C(3)-C(2)-H(2)	120.2
C(1)-C(2)-H(2)	120.2
C(4)-C(3)-C(2)	121.3(3)
C(4)-C(3)-H(3)	119.3
C(2)-C(3)-H(3)	119.3
C(3)-C(4)-C(5)	119.2(3)
C(3)-C(4)-H(4)	120.4

- C(5)-C(4)-H(4) 120.4
- C(6)-C(5)-C(4) 120.6(3)

- C(6)-C(5)-H(5) 119.7
- C(4)-C(5)-H(5) 119.7
- C(5)-C(6)-C(1) 120.7(2)
- C(5)-C(6)-H(6) 119.7
- С(1)-С(6)-Н(6) 119.7
- N(1)-C(7)-C(8) 115.1(2)
- N(1)-C(7)-P(1) 106.56(16)
- C(8)-C(7)-P(1) 111.87(16)
- N(1)-C(7)-H(7) 107.7
- C(8)-C(7)-H(7) 107.7
- P(1)-C(7)-H(7) 107.7
- C(9)-C(8)-C(14) 119.8(2)
- C(9)-C(8)-C(7) 120.4(2)
- C(14)-C(8)-C(7) 119.7(2)
- C(10)-C(9)-C(8) 121.8(3)
- С(10)-С(9)-Н(9) 119.1
- C(8)-C(9)-H(9) 119.1
- C(11)-C(10)-C(9) 117.2(3)
- С(11)-С(10)-Н(10) 121.4
- С(9)-С(10)-Н(10) 121.4
- C(13)-C(11)-C(10) 121.6(3)
- C(13)-C(11)-O(2) 110.4(3)
- C(10)-C(11)-O(2) 127.9(3)

- O(2)-C(12)-O(1) 108.8(2)
- O(2)-C(12)-H(12A) 109.9
- O(1)-C(12)-H(12A) 109.9
- O(2)-C(12)-H(12B) 109.9
- O(1)-C(12)-H(12B) 109.9
- H(12A)-C(12)-H(12B) 108.3
- C(11)-C(13)-C(14) 122.5(2)
- C(11)-C(13)-O(1) 109.8(2)
- C(14)-C(13)-O(1) 127.8(3)
- C(13)-C(14)-C(8) 117.0(2)
- С(13)-С(14)-Н(14) 121.5
- C(8)-C(14)-H(14) 121.5
- C(16)-C(15)-H(15A) 109.5
- C(16)-C(15)-H(15B) 109.5
- H(15A)-C(15)-H(15B) 109.5
- C(16)-C(15)-H(15C) 109.5
- H(15A)-C(15)-H(15C) 109.5
- H(15B)-C(15)-H(15C) 109.5
- O(3)-C(16)-C(15) 109.2(3)
- O(3)-C(16)-H(16A) 109.8
- C(15)-C(16)-H(16A) 109.8
- O(3)-C(16)-H(16B) 109.8
- C(15)-C(16)-H(16B) 109.8

108.3

H(16A)-C(16)-H(16B)

C(1)-N(1)-C(7)	121.6(2)
C(1)-N(1)-H(1)	119.2
C(7)-N(1)-H(1)	119.2
C(13)-O(1)-C(12)	105.1(2)
C(11)-O(2)-C(12)	105.0(2)
C(16)-O(3)-P(1)	120.47(19)
O(5)-P(1)-O(4)	115.90(12)
O(5)-P(1)-O(3)	116.09(11)
O(4)-P(1)-O(3)	100.19(11)
O(5)-P(1)-C(7)	113.27(11)
O(4)-P(1)-C(7)	105.23(11)
O(3)-P(1)-C(7)	104.58(11)
C(17)-O(4)-P(1)	123.2(2)
O(4)-C(17)-C(18B)	117.7(9)
O(4)-C(17)-C(18A)	113.4(8)
C(18B)-C(17)-C(18A)	37.4(8)
O(4)-C(17)-H(17A)	108.9
C(18B)-C(17)-H(17A)	72.8
C(18A)-C(17)-H(17A)	108.9
O(4)-C(17)-H(17B)	108.9
C(18B)-C(17)-H(17B)	130.6
C(18A)-C(17)-H(17B)	108.9

- H(17A)-C(17)-H(17B) 107.7
- C(17)-C(18A)-H(18A) 109.5
- C(17)-C(18A)-H(18B) 109.5
- H(18A)-C(18A)-H(18B) 109.5
- C(17)-C(18A)-H(18C) 109.5
- H(18A)-C(18A)-H(18C) 109.5
- H(18B)-C(18A)-H(18C) 109.5
- C(17)-C(18B)-H(18D) 109.5
- C(17)-C(18B)-H(18E) 109.5
- H(18D)-C(18B)-H(18E) 109.5

C(17)-C(18B)-H(18F)

- H(18D)-C(18B)-H(18F) 109.5
- H(18E)-C(18B)-H(18F) 109.5

Symmetry transformations used to generate equivalent atoms:

109.5

Table 4. Anisotropic displacement parameters ($Å^2x \ 10^3$) for 1. The anisotropic

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
C(1)	32(1)	39(1)	35(1)	2(1)	19(1)	0(1)
C(2)	41(1)	40(2)	44(1)	-4(1)	18(1)	2(1)
C(3)	40(2)	52(2)	55(2)	2(1)	12(1)	12(1)
C(4)	39(2)	64(2)	47(2)	-9(1)	9(1)	-1(1)
C(5)	45(2)	49(2)	51(2)	-14(1)	22(1)	-7(1)
C(6)	43(1)	37(1)	44(1)	0(1)	22(1)	3(1)
C(7)	37(1)	32(1)	35(1)	3(1)	14(1)	1(1)
C(8)	34(1)	36(1)	38(1)	0(1)	16(1)	-2(1)
C(9)	68(2)	38(2)	70(2)	9(1)	45(2)	9(1)
C(10)	86(2)	47(2)	74(2)	13(2)	54(2)	3(2)
C(11)	53(2)	58(2)	51(2)	-8(1)	32(1)	-11(1)
C(12)	60(2)	96(3)	66(2)	-7(2)	41(2)	5(2)
C(13)	42(1)	44(2)	48(1)	-7(1)	22(1)	1(1)
C(14)	42(1)	35(1)	43(1)	3(1)	18(1)	1(1)
C(15)	126(4)	104(3)	61(2)	8(2)	54(2)	32(3)
C(16)	93(3)	76(2)	38(2)	2(2)	18(2)	15(2)
N(1)	42(1)	36(1)	36(1)	-1(1)	13(1)	7(1)
O(1)	89(2)	58(1)	98(2)	0(1)	68(2)	14(1)

displacement factor exponent takes the form: $-2\pi^2$ [$h^2a^{*2}U^{11} + ... + 2 h k a^* b^* U^{12}$]

O(2)	79(2)	71(2)	75(1)	-6(1)	57(1)	-5(1)
O(3)	50(1)	45(1)	41(1)	-3(1)	16(1)	-4(1)
O(5)	49(1)	40(1)	56(1)	8(1)	17(1)	7(1)
P(1)	36(1)	37(1)	39(1)	2(1)	16(1)	1(1)
O(4)	56(1)	49(1)	68(1)	4(1)	42(1)	2(1)
C(17)	205(6)	89(3)	165(5)	22(3)	161(5)	34(3)
C(18A)	265(16)	144(11)	173(7)	-39(6)	176(10)	-50(8)
C(18B)	265(16)	144(11)	173(7)	-39(6)	176(10)	-50(8)

Table 5. Torsion angles [°] for 1.

N(1)-C(1)-C(2)-C(3)	-176.4(2)
C(6)-C(1)-C(2)-C(3)	2.1(4)
C(1)-C(2)-C(3)-C(4)	-0.9(5)
C(2)-C(3)-C(4)-C(5)	-0.9(5)
C(3)-C(4)-C(5)-C(6)	1.5(5)
C(4)-C(5)-C(6)-C(1)	-0.3(4)
C(2)-C(1)-C(6)-C(5)	-1.5(4)
N(1)-C(1)-C(6)-C(5)	177.0(2)
N(1)-C(7)-C(8)-C(9)	-52.5(3)
P(1)-C(7)-C(8)-C(9)	69.4(3)
N(1)-C(7)-C(8)-C(14)	128.1(2)
P(1)-C(7)-C(8)-C(14)	-110.0(2)
C(14)-C(8)-C(9)-C(10)	0.8(4)
C(7)-C(8)-C(9)-C(10)	-178.6(3)
C(8)-C(9)-C(10)-C(11)	-2.4(5)
C(9)-C(10)-C(11)-C(13)	2.4(5)
C(9)-C(10)-C(11)-O(2)	-179.9(3)
C(10)-C(11)-C(13)-C(14)	-1.0(5)
O(2)-C(11)-C(13)-C(14)	-179.0(3)
C(10)-C(11)-C(13)-O(1)	179.1(3)
O(2)-C(11)-C(13)-O(1)	1.0(3)

C(11)-C(13)-C(14)-C(8)	-0.7(4)
O(1)-C(13)-C(14)-C(8)	179.3(3)
C(9)-C(8)-C(14)-C(13)	0.8(4)
C(7)-C(8)-C(14)-C(13)	-179.8(2)
C(2)-C(1)-N(1)-C(7)	-12.0(4)
C(6)-C(1)-N(1)-C(7)	169.5(2)
C(8)-C(7)-N(1)-C(1)	-75.0(3)
P(1)-C(7)-N(1)-C(1)	160.38(18)
C(11)-C(13)-O(1)-C(12)	4.9(3)
C(14)-C(13)-O(1)-C(12)	-175.1(3)
O(2)-C(12)-O(1)-C(13)	-8.9(3)
C(13)-C(11)-O(2)-C(12)	-6.5(3)
C(10)-C(11)-O(2)-C(12)	175.6(3)
O(1)-C(12)-O(2)-C(11)	9.5(3)
C(15)-C(16)-O(3)-P(1)	157.2(3)
C(16)-O(3)-P(1)-O(5)	21.8(3)
C(16)-O(3)-P(1)-O(4)	147.4(2)
C(16)-O(3)-P(1)-C(7)	-103.7(3)
N(1)-C(7)-P(1)-O(5)	51.8(2)
C(8)-C(7)-P(1)-O(5)	-74.86(19)
N(1)-C(7)-P(1)-O(4)	-75.80(18)
C(8)-C(7)-P(1)-O(4)	157.56(17)
N(1)-C(7)-P(1)-O(3)	179.12(15)

C(8)-C(7)-P(1)-O(3)	52.47(18)
O(5)-P(1)-O(4)-C(17)	-16.2(4)
O(3)-P(1)-O(4)-C(17)	-142.0(4)
C(7)-P(1)-O(4)-C(17)	109.7(4)
P(1)-O(4)-C(17)-C(18B)	-156.7(11)
P(1)-O(4)-C(17)-C(18A)	-115.3(8)

Symmetry transformations used to generate equivalent atoms: