Supplementary Information

Ceria-Supported Ruthenium Catalysts for the Synthesis of Indole via Dehydrogenative

N-Heterocyclization

Shun Shimura,^[a] Hiroki Miura,^[a] Kenji Wada,^[a]* Saburo Hosokawa,^[a] Seiji Yamazoe,^[b] and

Masashi Inoue^[a]*

[a] Mr. Shun Shimura, Mr. Hiroki Miura, Dr. Kenji Wada,* Dr. Saburo Hosokawa,^[a] and Prof. Dr.
Masashi Inoue*

Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering,

Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510 (Japan)

Fax: (+81)75-383-2479

E-mail: wadaken@scl.kyoto-u.ac.jp

[b] Dr. Seiji Yamazoe

Department of Materials Chemistry, Graduate School of Science and Technology

Ryukoku University, Seta, Otsu 520-2194 (Japan)

Fax: (+81)77-543-7483

E-mail: yamazoe@rins.ryukoku.ac.jp

1. Nitrogen gas adsorption analysis of the catalyst

BET surface areas of representative supported catalysts used in the present study are summarized in

Table S1. The Ru/CeO₂(KOH)-400 catalyst showed typical type IV nitrogen

adsorption/desorption isotherms, which indicate that their pore sizes were within the mesopore

region. The catalysts supported on CeO₂-ZrO₂ mixed oxides had slightly smaller BET surface

areas than those supported on pure ceria and zirconia.

Entry	Catalyst	BET surface area (m ² /g)	Entry	Catalyst	BET surface area (m ² /g)
1	Ru/CeO ₂ (KOH)-400	102	6	Ru/SiO ₂ -400	269
2	Ru/CeO ₂ (KOH)-200	112	7	Ru/Al_2O_3-400	142
3	Ru/ZrO_2-400	95	8	Ru/CeO_2 - $ZrO_2(80/20)$	66
4	Ru/MgO-400	148	9	Ru/CeO_2 - $ZrO_2(50/50)$	55
5	Ru/TiO ₂ -400	49	10	Ru/CeO ₂ -ZrO ₂ (20/80)	82

Table S1. BET surface areas of the catalysts

2. XRD patterns of the supported-Ru catalysts calcined at 400 °C

XRD patterns of Ru catalysts supported on various oxides are shown in Figure S1. The calcination temperature was 400 °C. Peaks due to crystalline RuO₂ were observed for Ru catalysts supported on SiO₂ and Al₂O₃. On the other hand, such peaks were not observed for catalysts supported on CeO₂, ZrO₂, TiO₂, and MgO, which implied the formation of dispersed Ru species on the surface. The XRD patterns of CeO₂–ZrO₂ mixed oxides are shown in Figure S2. Diffraction peaks due to the mixed oxides shifted toward lower angles with an increase in the Ce/Zr ratio, indicating the formation of solid solutions of ceria and zirconia.

Figure S1. XRD patterns of the supported-Ru catalysts calcined at 400 °C.

Figure S2. XRD patterns of ceria-zirconia mixed oxides

3. TG-DTA profiles of as-impregnated Ru/CeO₂

Figure S3 shows TG–DTA profiles of as-impregnated Ru/CeO₂(KOH) in air. There was an exothermic weight decrease at around 200 $^{\circ}$ C, and the extent of this decrease is almost consistent with the weight of acetylacetonato ligands in the catalyst (5.6%).

