Electronic Supplementary Information

Improvement of nano-particulate Ce_xZr_{1-x}O₂ composite oxides supported cobalt oxide catalysts for CO preferential oxidation in H₂-rich gases

Zhongkui Zhao*, Xiaoli Lin, Ronghua Jin, Yitao Dai and Guiru Wang

State Key Laboratory of Fine Chemicals, Department of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China; E-mail: zkzhao@dlut.edu.cn

Fig. S1 Gas chromatograph for reaction mixture as reaction being performed at 250 $^{\circ}\mathrm{C}$

	Table S1 The average crv	stallite size and latti	ce parameters	of Co ₂ O ₄ /RM-Ce ₂ Zr ₄ O ₂					
	catalysts with various Ce/(Ce+Zr) atomic ratios from X-ray diffraction patterns.								
	Atomic ratio (x) of		Lattice	Average					
	Ce/(Ce+Zr)	Lattice type	parameters	crystallite size					
			(A)	(nm)					
	1 ^a	Cubic Fm3m	a=5.4225	6.6					
	1	Cubic <i>Fm</i> 3 <i>m</i>	a=5.4177	7.3					
	0.95	Cubic <i>Fm</i> 3 <i>m</i>	a=5.4057	5.1					
	0.85	Cubic <i>Fm</i> 3 <i>m</i>	a=5.3961	5.1					
	0.80	Cubic <i>Fm</i> 3 <i>m</i>	a=5.3795	4.3					
	0.75	Cubic <i>Fm</i> 3 <i>m</i>	a=5.3584	4.7					
	0.25	Tetragonal P42/nmc	a=3.6654 c=5.1879	5.2					

^a Pure CeO₂, without Co₃O₄ loading.

Table S2

H₂-TPR quantitative analysis results for the Co_3O_4/RM - $Ce_xZr_{1-x}O_2$ catalysts with various Ce/(Ce+Zr) atomic ratios

	H ₂ Uptak	e CeO ₂ Conten	t Reducible CeO2 Conten	t Reducible CeO2 ^c
X	(µmol/g)	(µmol/g)	(µmol/g) [∞]	(%)
1	1218	5709	1838	32.2
0.95	1294	5502	1992	36.2
0.85	1573	5070	2550	50.3
0.80	1635	4843	2673	55.2
0.75	1675	4610	2752	59.7
0.50	1687	3329	2776	83.4
0.25	1107	1815	1615	89.0
0	400	7984 ^a	200	2.5 ^d

^{*a*} ZrO₂ content in ZrO₂ support and Co₃O₄/ZrO₂ catalyst; ^{*b*} Calculated by $2\times[H_2$ Uptake-299], where the value 299 µmol.g⁻¹ is the H₂ uptake for the 1.8 wt% Co₃O₄ in the catalysts; ^{*c*} The reducible CeO₂ percentage in CeO₂ content of catalysts (except for the sample with the pure ZrO₂ as support), which is calculated by [Reducible CeO₂ Content]/[CeO₂ Content of Catalyst]×100%, ^{*d*} The reducible ZrO₂ percentage in ZrO₂ amount of support and Co₃O₄/ZrO₂ catalyst.

Fig. S3 Catalytic activity of the RM-Ce_{0.85}Zr_{0.15}O₂ with (1.8 wt.% of cobalt oxide loading) and without cobalt oxide. Operation conditions: GHSV=15,000 ml.h⁻¹.g⁻¹, 0.5-1.25 vol.% CO, 1.0 vol.% O₂, 50 vol.% H₂ and balance Ar.

Table S3 The analysis results for the XRD of $Co_3O_4/Ce_{0.85}Zr_{0.15}O_2$ catalysts with a loading range in 2-27 wt%

	Cc	0 ₃ O ₄	CZ		
Catalysts	Lattice type	Average crystallite size (nm)	Lattice type	Crystallite size (nm)	
CZ	-	-	Fm3m	5.5	
2% Co ₃ O ₄ /CZ(450-450)	-	-	Fm3m	5.4	
4% Co ₃ O ₄ /CZ(450-450)	-	-	Fm3m	5.8	
8% Co ₃ O ₄ /CZ(450-450)	Fd3m	13.1	Fm3m	5.7	
14% Co ₃ O ₄ /CZ(450-450)	Fd3m	14.2	Fm3m	5.8	
16% Co ₃ O ₄ /CZ(450-450)	Fd3m	14.9	Fm3m	5.8	
20% Co ₃ O ₄ /CZ(450-450)	Fd3m	15.0	Fm3m	6.1	
27% Co ₃ O ₄ /CZ(450-450)	Fd3m	16.4	Fm3m	6.0	

is Science & Technology	of Chemistry 2011
(ESI) for Catalysi	The Royal Society
Supplementary Material	This journal is (c)

	loading range in 2-27 wt%.	
	sts with a	- -
	₅ O ₂ catalys	-
	Ce _{0.85} Zr _{0.15}	:
	he Co ₃ O ₄ /	C
	ilts for t	
	ntitative analysis resu	
<mark>Table S4</mark>	H ₂ -TPR quan	

H ₂ uptake for CeO ₂	_ (µmol g ⁻¹)	936	706	633	597	427	269	228
H ₂ uptake for Co ₃ O ₄	(hmol g ⁻¹)	332	664	1328	2324	2656	3320	4481
Ś	(0°)	496	499	501	503	506	522	528
~	.() ()	350	350	357	364	355	359	367
7	.0°	ı	ı	342	342	337	334	340
0	(<u>)</u>	261	266	275	285	285	289	296
б	() ()	100	98	98	66	98	102	104
H ₂ uptake	(Jumol g ⁻¹)	1268	1370	1961	2921	3038	3589	4709
	Catalysts	2%Co ₃ O ₄ /CZ(450-450)	4%Co ₃ O ₄ /CZ(450-450)	8%Co ₃ O ₄ /CZ(450-450)	14%Co ₃ O ₄ /CZ(450-450)	16%Co ₃ O ₄ /CZ(450-450)	20%Co ₃ O ₄ /CZ(450-450)	27%Co ₃ O ₄ /CZ(450-450)

Fig. S4 H₂ TPR profile of the bare Ce_{0.85}Zr_{0.15}O₂ support without cobalt loading

