Supporting Information

Ni^{2+} -doped $Zn_xCd_{1-x}S$ photocatalysts from singlesource precursors for efficient solar hydrogen production under visible light irradiation

Yabo Wang,¹ Jianchun Wu¹, Jianwei Zheng², Rongrong Jiang,¹ Rong Xu^{1,*}

¹School of Chemical & Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459

²Institute of High Performance Computing, 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632

E-mail address: rxu@ntu.edu.sg (R. Xu).

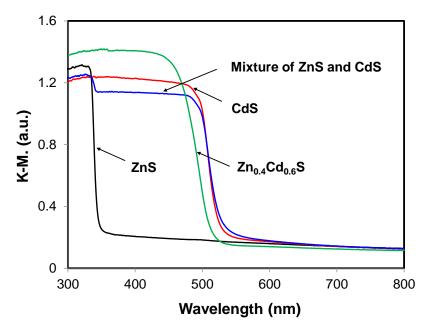


Fig. S1 UV-vis DRS of CdS, ZnS, physical mixture of CdS and ZnS, and $Zn_{0.4}Cd_{0.6}S$ solid solution.

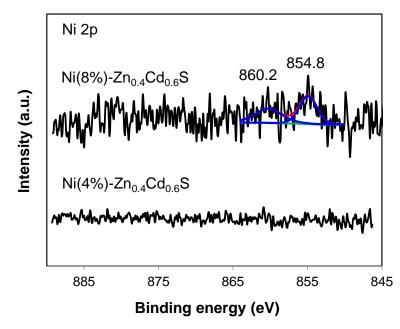


Fig. S2 XPS spectra of Ni 2p of samples Ni(4%)-Zn_{0.4}Cd_{0.6}S and Ni(8%)- Zn_{0.4}Cd_{0.6}S.

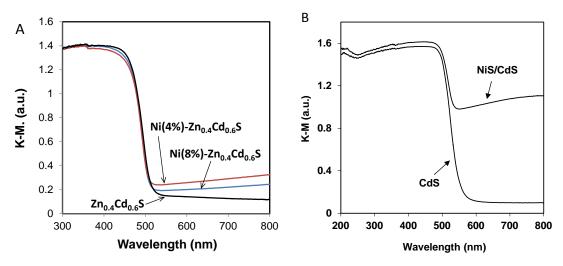


Fig. S3 UV-vis DRS spectra of (A) Ni(4%)-Zn_{0.4}Cd_{0.6}S and Ni(8%)-Zn_{0.4}Cd_{0.6}S, and (B) NiS/CdS (from Ref. 4: Zhang et al.).

We detected the formation of $S_2O_3^{2-}$ ions during photocatalytic reaction based on the following self-redox equation.

$$Na_2S_2O_3 + 2HCl \rightarrow 2NaCl + H_2O + SO_2 + S$$
(S1)

After 4 h of photocatalytic reaction, the reaction mixture was centrifuged to remove solid catalyst particles. Excess $Zn(NO_3)_2$ was added to the clear supernatant to precipitate S^{2-} and SO_3^{2-} ions. After removing the precipitates by centrifugation, concentrated aqueous HCl (37 wt%) solution was added to the clear supernatant. The formation of elemental S precipitate with a light yellow color can be observed as shown in Fig. S4E, indicating the existence of $S_2O_3^{2-}$ ions in the solution. Control experiments were also carried out and the results are shown in Fig. S4A-D. The presence of $S_2O_3^{2-}$ ions in the reaction mixture implied that the reactions described in Equations 5 and 6 (Page 15) took place.

$$2S^{2-} + 2h^{+} \to S_{2}^{2-} \tag{5}$$

$$S_2^{2-} + SO_3^{2-} \to S_2O_3^{2-} + S^{2-}$$
(6)

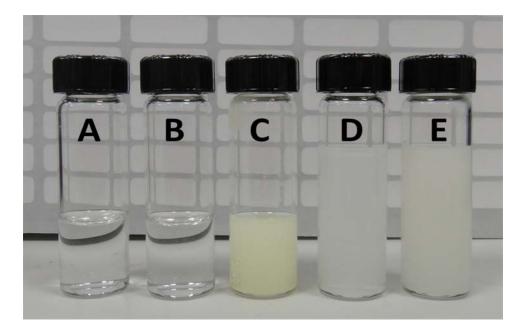


Fig. S4 Photo images of different mixtures to verify the formation of $S_2O_3^{2-}$ in the photoreaction. (A) 2 mL of 0.1 M Na₂SO₃ mixed with 1 mL of 37 wt% HCl, (B) 2 mL of 0.1 M Na₂SO₄ mixed with 1 mL of 37 wt% HCl, (C) 2 mL of 0.1 M Na₂S₂O₃ mixed with 1 mL of 37 wt% HCl, (D) 1 mL of 0.1 M Na₂SO₃ and 1 mL of 0.1 M Na₂SO₄ mixed with 2 mL 37 wt% HCl and (E) 2 mL of the reaction solution (after removal of S²⁻ and SO₃²⁻) mixed with 2 mL 37 wt% HCl.

Electronic Supplementary Material (ESI) for Catalysis Science & Technology This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2012

To confirm the formation of SO_4^{2-} ions by Equation (4),

$$SO_3^{2-} + 2OH^- + 2h^+ \rightarrow SO_4^{2-} + 2H^+$$
 (4)

the above procedure was repeated to remove S^{2-} and SO_3^{2-} ions (by $Zn(NO_3)_2$), and $S_2O_3^{2-}$ (by HCl to form S). High speed centrifugation was applied after precipitation to remove solids formed. BaCl₂ aqueous solution was then added to the clear supernatant and the observation of white precipitate indicated the existence of SO_4^{2-} ions (Fig. S5B) and thus Equation (4) was proven to take place. A control experiment was also carried out using an aqueous solution of $Na_2S_2O_3$ after reacted with HCl followed by centrifugation. Upon adding BaCl₂ solution to the control sample, no precipitate can be observed (Fig. S5A), indicating that SO_2 formed according to the above Equation S1 did not form precipitate with BaCl₂.

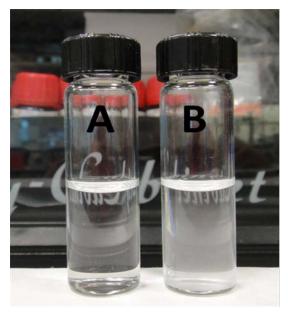


Fig. S5 Photo images of mixtures after adding $BaCl_2$ solution to verify the formation of SO_4^{2-} in photoreaction. (A) Control sample: aqueous solution of $Na_2S_2O_3$ after reacted with HCl followed by centrifugation; (B) photoreaction solution after removal of S^{2-} , SO_3^{2-} , and $S_2O_3^{2-}$.

The above results verified the proposed reaction mechanism based on Equations 2-6 in the main text.