Periodic mesoporous organosilica functionalized sulfonic acid as highly efficient and recyclable catalysts in biodiesel production

Babak Karimi,*^a Hamid Mohamad-Mirzaei^a and Akbar Mobaraki^a

^{*a*} Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), P.O.Box 45195-1159, Gava Zang, Zanjan, Iran.

Table of contents	Page
1. Experimental Procedure	S2
1-1. General	S2
1-2. Chemicals	S2
1-3. Catalyst preparation	S2
1-3-1. Synthesis of Et-PMO-Me-PrSO ₃ H (1b)	S2
1-3-2. Synthesis of Ph-PMO-Me-PrSO ₃ H (1a)	S2
1-3-3. Preparation of SBA-15-Pr-SH	S2
1-3-4. Preparation of SBA-15-Ph-PrSH	S 3
1-3-5. Preparation of SBA-15-PrSO ₃ H	S 3
1-3-6. Preparation of SBA-15-Ph-PrSO ₃ H	S 3
1-4. Characterization	S 3
1-4-1. Et-PMO-Me-PrSH analysis data	S4
1-4-2. Et-PMO-Me-PrSO ₃ H (1b) analysis data	S 5
1-4-3. Ph-PMO-Me-PrSO ₃ H (1a) analysis data	S7
1-4-4. Reused Et-PMO-Me-PrSO ₃ H catalyst data at 150 °c	S 9
1-4-5. SBA-15-PrSO ₃ H porosimetry data	S10
1-4-6. SBA-15-Ph-PrSO ₃ H porosimetry data	S11
1-5. Characterization of the oils and products	S13
1-6. Refrences	S29

1. Experimental Procedure

1-1. General

¹H NMR spectra were recorded on commercial instruments (250 MHz and 400 MHz). Chemical shifts were reported in ppm with the solvent resonance as the internal standard (CDCl3: δ = 7.26). Spectra are reported as follows: chemical shift (= ppm), multiplicity (s= singlet, d= doublet, t= triplet, q= quartet, m= multiplet), coupling constants (Hz), integration. ¹³C NMR spectra were collected on commercial instruments (62.90 MHz and 100.60 MHz) with complete proton decoupling. Reagents obtained from commercial sources were used without further purification. Thermal treatments were conducted from room temperature to 800 °C in argon flow using a Pheometric Scientific analyzer.

1-2. Chemicals

BTEB (1,4-bis(triethoxysilyl)benzene), BTEE (1,2-bis(triethoxysilyl)ethane), MPMDS (3-mercaptopropylmethyl dimethoxysilane), tetraethoxysilane (TEOS), 3-mercaptopropyl trimethoxysilane (MPTMS) and triblock co-polymer P123 (Eo₇₀ Po₂₀ Eo₇₀) were obtained from Aldrich and used as received.

1-3. Catalyst preparation

1-3-1. Synthesis of Et-PMO-Me-PrSO₃H (1b)

In this synthesis procedure, pluronic P123 (1.95 g) was added under vigorous stirring to 70 ml of HCl solution (2*N*). After complete dissolution of surfactant at 35 °C, BTEE (2.77 g) was added and the agitation was continued for 3h before the dropwise incorporation of MPMDS (0.478 g). The stirring was followed for 24 h at 35 °C. Then the suspension was aged for 24 h at 87 °C. The solid material were separated by filteration, washed with deionized water and dried at room temperature. The surfactant was removed by solvent extraction with anhydrous ethanol in a soxhlet apparatus for 24 h (Entry 1, Table 1). Typically, 0.2 g of extracted material was contacted with 8 g H₂O₂ (30 wt%) and the suspension was stirred at room temperature for 24 h. After filteration and washing with deionized water and warm ethanol separately, the oxidized samples were acidified in 100 ml 0.1 M H₂SO₄ solution during 2 h. Next, the samples were washed thoroughly with deionized water until neutral *p*H, filtered and vaccum dried at 60 °C overnight.

1-3-2. Synthesis of Ph-PMO-Me-PrSO₃H (1a)

In a typical one-step synthesis, 0.66 g pluronic P123 was dissolved in 23.6 g deionized water, 0.57 g H_2O_2 (30wt%), and 0.13 g of HCl (37wt%). Then 0.47 g BTEB and 0.0902 g (30 mol% in total silica precursors) of MPMDS were added to the solution. The resulting mixture was agitated for 2 h at 40 °C and thereafter aged for 24 h at 100 °C. The resulting solid material was filtered and air-dried. To extract the residual block co-polymer, the solid material (0.5 g) was stirred in acetone (60 ml) for 10 h at 56 °C, followed by washing with deionized water. The final products were obtained after drying the samples in oven for 1 day at 100 °C.

1-3-3. Preparation of SBA-15-Pr-SH

The synthesis of SBA-15-PrSH has been achieved using known procedure described by Stucky and his co-workers. ¹ This procedure involved a synthetic strategy based on cocondensation of tetraethoxysilane (TEOS) and 3-mercaptopropyltrimethoxysilane

(MPTMS) in the presence of Pluronic P123 as structure directing agent. In a typical preparation procedure, 4.0 g of Pluronic P123 (Aldrich, average Mw =5800) was dissolved in 125 g of 1.9 M HCl solution with stirring at room temperature. The solution was heated to 40 °C before adding 6.83g TEOS. After 3 h pre-hydrolysis of TEOS, 1.6 g thiol precursor MPTMS was added. The resultant solution was stirred for 20 h at 40 °C, after which the mixture was aged at 100 °C for 24 h under static conditions. The solid was recovered by filtration and air dried at room temperature overnight. The template was removed from the as-synthesized material by washing with ethanol using a Soxhelet apparatus for 24 h.

1-3-4. Preparation of SBA-15-Ph-PrSH²

To a suspension of SBA-15-Pr-SH (3 g) in dry toluene $PhSi(OEt)_3$ (PTES, 4 mmol) was added. The resulting mixture was first stirred at room temperature for 1 h and then refluxed for further 24 h. The solid materials was filtered and successively washed with toluene, EtOH, and Et₂O and dried overnight at 120 °C to afford the corresponding SBA-15-Ph-PrSH.

1-3-5. Preparation of SBA-15-PrSO₃H

Typically, 0.3 g of SBA-15-Pr-SH was suspended in 10 g of aqueous 30 wt% H_2O_2 . This suspension was stirred at room temperature in an Ar atmosphere for 24 h. After the oxidation treatment, the resulting solution was filtered and washed separately with water and ethanol. Finally the wet material was suspended in 1M H_2SO_4 solution for 2 h and then was washed several times with deionized water and ethanol and dried at 60 °C under vacuum overnight to give the corresponding catalyst.

1-3-6. Preparation of SBA-15-Ph-PrSO₃H²

Conversion of thiol groups of catalyst to sulfonic acid moiety was accomplished by hydrogen peroxide. Typically, 0.3 g of solid hodrophobic material was suspended in 10 g of aqueous 30 wt% H_2O_2 . This suspension was stirred at room temperature in an Ar atmosphere for 24 h. After the oxidation treatment, the resulting solution was filtered and washed separately with water and ethanol. Finally the wet material was suspended in 1M H_2SO_4 solution for 2 h and then was washed several times with water and ethanol and dried at 60 °C under vacuum overnight to give the corresponding catalyst.

1-4. Characterization

The textural properties of the functionalized mesoporous organosilicas were measured from nitrogen adsorption-desorption isotherms at 77 k with a BELSORB max system. The surface area and pore size distribution were calculated with the BET and BJH methods, respectively. Organic material present in the solids was determined by elemental analysis and the organic composition of the modified mesoporous materials was determined by thermogravimetric analysis (TGA) and differential thermoanalysis (DTA), with heating from room temperature to 800 °C under Argon flow. The ion exchange capacities of the sulfonic acid functionalized mesoporous organosilicas were determined by acid-base titration and *p*H metery. The TEM image also demonstrate that the mesostructure Et-PMO-Me-PrSO₃H (1b) exhibit ordered 2D-hexagonal (p6mm) patterns.

1-4-1. Et-PMO-Me-PrSH analysis data

 r_p /nm BJH analysis of Et-PMO-Me-PrSH

1-4-2. Et-PMO-Me-PrSO₃H (1b) analysis data

TEM image of Et-PMO-Me-PrSO₃H catalyst

1-4-3. Ph-PMO-Me-PrSO₃H (1a) analysis data

 $N_2 \, a ds orption-desorption \, of \, Ph-PMO-Me-PrSO_3H \, catalyst$

TGA analysis of Ph-PMO-Me-PrSO₃H catalyst

DTA diagram for Ph-PMO-Me-PrSO₃H catalyst

1-4-4. Reused Et-PMO-Me-PrSO₃H catalyst data at 150 °c

N2 adsorption-desorption of 3rd reused Et-PMO-Me-PrSO₃H catalyst in conditions: T=150 °c, Molar ratio Canola oil/methanol= 1/100, time= 4 h

BJH analysis of 3rd reused Et-PMO-Me-PrSO₃H catalyst in conditions: T=150 °c, Molar ratio Canola oil/methanol= 1/100, time= 4 h

1-4-5. SBA-15-PrSO₃H porosimetry data

 $N_2\,ads or ption-desorption\,\, of\,\, SBA-15-PrSO_3H\,\, catalyst$

 r_{p} /nm BJH analysis of SBA-15-PrSO₃H catalyst

1-4-6. SBA-15-Ph-PrSO₃H porosimetry data

 r_{p} /nm BJH analysis of SBA-15-Ph-PrSO_3H catalyst

1-5. Characterization of the product

1 Canola oil

¹H NMR (400 MHz; CDCl₃): δ_{H} = 5.27-5.41 (m, 9H), 4.25-4.31 (dd, J_I = 4.4 Hz, J_2 = 12 Hz, 2H), 4.14-4.18 (dd, J_I = 5.6 Hz, J_2 = 12.00 Hz, 2H), 2.79 (t, 2H), 2.33 (t, J= 7.5 Hz, 6H), 2.02-2.09 (m, 11H), 1.63 (brs, 6H), 1.27-1.32 (brs, 57H), 0.99 (t, J= 7.5 Hz, 9H); ¹³C NMR (100.6 MHz, CDCl₃): δ_{C} = 173.2, 172.8, 130.2, 130.0, 129.9, 129.7, 129.6, 128.0, 127.9, 68.8, 62.1, 34.1, 34.0, 31.9, 31.5, 29.7, 29.7, 29.6, 29.6, 29.6, 29.5, 29.5, 29.4, 29.4, 29.3, 29.3, 29.2, 29.2, 29.1, 29.1, 29.0, 27.2, 25.6, 24.8, 22.6, 22.6, 14.1

IR (neat): 456, 605, 721, 1103, 1161, 1235, 1371, 1456, 1652, 1745, 2925, 3006, 3461

¹HNMR (400 MHz) of Canola oil

2 Olive oil

¹H NMR (400 MHz; CDCl₃): $\delta_{\rm H}$ = 5.20-5.40 (m, 7H), 4.25-4.31 (dd, J_I = 4.2 Hz, J_2 = 11.7 Hz, 2H), 4.09-4.16 (dd, J_I = 5.8 Hz, J_2 = 12.0 Hz, 2H), 2.72-2.80 (m, 1H), 2.30 (t, J= 7.8 Hz, 8H), 1.95-2.10 (m, 12H), 1.55-1.70 (m, 8H), 1.25 (brs, 72H), 0.86 (t, J= 6.0 Hz, 12H); ¹³C NMR (100.6 MHz, CDCl₃): $\delta_{\rm C}$ = 173.2, 172.8, 130.2, 129.9, 129.6, 128.0, 127.8, 68.8, 62.0, 34.1, 34.0, 33.9, 31.8, 31.5, 29.7, 29.6, 29.5, 29.3, 29.1, 27.2, 27.1, 25.6, 24.8, 24.6, 14.1 IR (neat): 456, 603, 722, 1161, 1235, 1370, 1457, 1745, 2924, 3002, 3467

¹HNMR (400 MHz) of refined olive oil

4 Corn oil

¹H NMR (400 MHz; CDCl₃): δ_{H} = 5.27-5.41 (m, 9H), 4.29-4.33 (dd, J_{I} = 4.0 Hz, J_{2} = 12 Hz, 2H), 4.14-4.18 (dd, J_{I} = 5.6 Hz, J_{2} = 12.00 Hz, 2H), 2.78 (t, J= 6 Hz, 3H), 2.32 (t, J= 7.6 Hz, 6H), 2.02-2.09 (m, 10H), 1.62 (brs, 6H), 1.27-1.32 (brs, 57H), 0.92 (m, 9H); ¹³C NMR (100.6 MHz, CDCl₃): δ_{C} = 173.2, 172.8, 130.2, 130.0, 129.9, 129.9, 129.6, 129.6, 128.0, 127.8, 68.8, 62.0, 34.1, 34.0, 31.9, 31.9, 31.5, 30.9, 29.7, 29.7, 29.6, 29.6, 29.5, 29.5, 29.3, 29.3, 29.3, 29.2, 29.2, 29.1, 29.1, 29.0, 27.2, 25.6, 24.8, 22.6, 22.6, 14.1

5 Sunflower oil

¹H NMR (400 MHz; CDCl₃): δ_{H} = 5.27-5.41 (m, 10H), 4.29-4.33 (dd, J_{I} = 4.0 Hz, J_{2} = 12 Hz, 2H), 4.14-4.18 (dd, J_{I} = 5.6 Hz, J_{2} = 12.00 Hz, 2H), 2.78 (t, J= 6 Hz, 3H), 2.32 (t, J= 7.6 Hz, 6H), 2.02-2.09 (m, 10H), 1.62 (brs, 6H), 1.27-1.32 (brs, 54H), 0.92 (m, 9H); ¹³C NMR (100.6 MHz, CDCl₃): δ_{C} = 173.2, 172.8, 130.2, 130.0, 129.9, 129.7, 129.6, 128.0, 128.0, 127.9, 68.8, 62.1, 34.2, 34.0, 31.9, 31.9, 31.5, 29.7, 29.7, 29.6, 29.6, 29.5, 29.5, 29.4, 29.3, 29.3, 29.2, 29.2, 29.1, 29.1, 29.0, 27.2, 25.6, 24.8, 22.6, 22.6, 14.1

6 Biodiesel 99% from refined olive oil

¹H NMR (400 MHz; CDCl₃): δ_{H} = 5.33-5.40 (m, 2H), 3.68 (s, 3H), 2.32 (t, J= 7.6 Hz, 2H), 2.00-2.03 (m, 4H), 1.62-1.65 (quin, J= 6.8 Hz, 2H), 1.27-1.32 (brs, 22H), 0.89 (m, 3H); ¹³C NMR (100.6 MHz, CDCl₃): δ_{C} = 174.3, 129.9, 129.7, 51.4, 34.0, 31.9, 29.7, 29.7, 29.6, 29.5, 29.4, 29.3, 29.3, 29.2, 29.1, 29.1, 29.1, 27.2, 27.1, 24.9, 14.0

¹HNMR (400 MHz) of biodiesel 99% from refined olive oil

Electronic Supplementary Material (ESI) for Catalysis Science & Technology This journal is The Royal Society of Chemistry 2012

7 Biodiesel 98% from Canola oil

¹H NMR (400 MHz; CDCl₃): δ_{H} = 5.34-5.38 (m, 3H), 3.66 (s, 3H), 2.77 (t, J=6 Hz, 1H), 2.30 (t, J= 7.6 Hz, 2H), 2.00-2.07 (m, 4H), 1.60-1.63 (t, J= 6.4 Hz, 2H), 1.31 (brs, 19H), 0.89 (m, 3H); ¹³C NMR (100.6 MHz, CDCl₃): δ_{C} = 174.2, 130.1, 129.9, 129.7, 128.0, 127.9, 51.3, 34.0, 31.9, 31.5, 29.7, 29.6, 29.5, 29.5, 29.4, 29.3, 29.3, 29.2, 29.1, 29.1, 29.1, 27.2, 27.2, 27.1, 25.6, 24.9, 14.0

¹HNMR (400 MHz) of canola biodiesel (98%)

8 biodiesel 93% from olive sludge extracted oil

¹H NMR (400 MHz; CDCl₃): δ_{H} = 5.32-5.40 (m, 2H), 3.68 (s, 3H), 2.32 (t, J= 7.6 Hz, 2H), 2.00-2.03 (m, 4H), 1.62-1.65 (quin, J= 6.8 Hz, 2H), 1.27-1.32 (brs, 23H), 0.91 (m, 3H); ¹³C NMR (100.6 MHz, CDCl₃): δ_{C} = 174.3, 130.2, 130.0, 129.7, 128.0, 127.9, 51.4, 34.1, 31.9, 31.5, 29.7, 29.7, 29.6, 29.5, 29.4, 29.3, 29.3, 29.2, 29.1, 29.1, 27.2, 27.1, 25.6, 24.9, 14.0

11 Glycerol

¹H NMR (400 MHz; DMSO): δ_{H} = 3.27-3.31 (dd, J_I = 5.6 Hz, J_2 = 10.8 Hz, 2H), 3.35-3.39 (dd, J_I = 5.6, J_2 = 10.8 Hz, 2H), 3.40-3.46 (quin, J= 5.6 Hz, 1H); ¹³C NMR (100.6 MHz, DMSO): δ_{C} = 72.9, 63.5

IR (neat): 801, 856, 920, 1041, 1104, 1453, 1646, 2128, 2500-3800 (broad)

Refrences

¹ D. Margolese, J. A. Melero, S. C. Christiansen, B. F. Chmelka and G. D. Stucky, Direct Syntheses of Ordered SBA-15 Mesoporous Silica Containing Sulfonic Acid Groups, Chem. Mater. 2000, **12**, 2448-2459.

² B. Karimi and D. Zareyee, Design of a Highly Efficient and Water-Tolerant Sulfonic Acid Nanoreactor Based on Tunable Ordered Porous Silica for the von Pechmann Reaction, Org. Lett., 2008, **10**, 3989-3992.