SUPLEMENTARY MATERIAL

for

"On-Water" Rhodium-Catalysed Hydroformylation for the Production of Linear Alcohols.

Olivier Diebolt^a, Christian Müller^a, Dieter Vogt^a*

^a Schuit Institute of Catalysis, Laboratory of Homogeneous Catalysis, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (The Netherlands), Fax: (+31)40-245-5054, <u>d.vogt@tue.nl</u>

^{*} Dieter Vogt. Tel.: +31.40.247.2730; fax: +31.40.245.5054.; e-mail: o.vogt@tue.nl

Table of content

Experimental details	S2
Calibration curves	S 3
Nonanal reduction using P ⁿ Bu ₃ and PPh3	S4
Nonanal reduction using Ru ₃ (CO) ₁₂ / Xantphos	S5
Reaction profile of reaction Table 2, entry 1, Table 3, entry 1	S 6
Reaction profile of reaction Table 2, entry 2	S7
Gas chromatogram reaction Table 2, entry 3	S 8
Reaction profile of reaction Table 3, entries 3 and 4	S 9
Reaction profile of reaction Table 3, entry 5	S10
Reaction profile of reaction Table 3, entry 6	S11
Reaction profile of reaction Table 3, entry 7	S12
Reaction profile of reaction Table 3, entries 8-9	S13
Reaction profile of reaction Table 3, entries 10-11	S14

Parameter screening for cobalt-catalysed hydroformylation	S15
---	-----

Experimental details

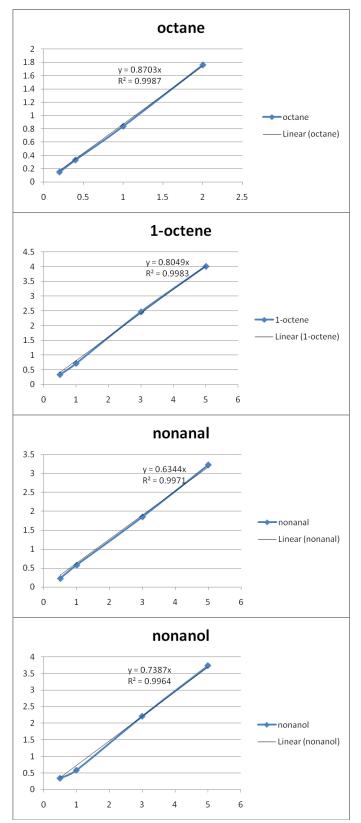
General:

Gas chromatography (GC) analyses were performed on a Shimadzu GC-17A gas chromatograph equipped with a flame ionization detector (FID) on an Ultra-2 column (HP?) (25 m, 200 μ m, film thickness: 0.33 μ m).

Method:

80°C to 280°C with a slope of 10°C min⁻¹, then holding the temperature at 280°C for 2 min.

1-octene (Aldrich) was distilled before use. Ethanol and isopropanol were dried on molecular sieves and degassed before use. Rhodium sources were purchased from commercial sources, stored under argon and used as received.


General procedure for nonanal hydrogenation:

Reactions were performed in home-made 10 mL autoclaves equipped with a magnetic stirrer bar. The autoclave was charged with $[Rh(CO)_2(acac)]$ (10 µmol; cod = 1,5-cyclooctadiene), alkene (2 mmol, S/Rh=200) and ligand (30 µmol, L/Rh= 3 for Xantphos; 40 µmol, L/Rh = 4 for PBu₃) and the desired solvent under argon atmosphere. The autoclave was purged three times with H₂ (P=10 bar) to remove the remaining argon from the autoclave. Subsequently, the autoclave was pressurised with CO and H₂ to the desired pressure and heated to reaction temperature using an oil bath. After a certain reaction time, the autoclave was cooled to room temperature. One drop of the reaction mixture was extracted with ether, the organic phase poured into a GC vial, diluted with dichloromethane and analysed by GC.

General procedure for 1-octene hydroformylation-hydrogenation:

The reaction profiles were obtained using a home-made magnetically stirred 75 mL autoclave equipped with a high pressure sampling system. The solids were introduced first into the autoclave, previously purged with argon, after which the liquids were added (solvent, 1-octene, P^nBu_3). The autoclave was then purged three times with H₂ (P=10 bar) to remove the remaining argon. Subsequently, the autoclave was pressurised with CO and H₂ to the desired pressure and heated to reaction temperature. Samples were taken out regularly and analysed by GC.

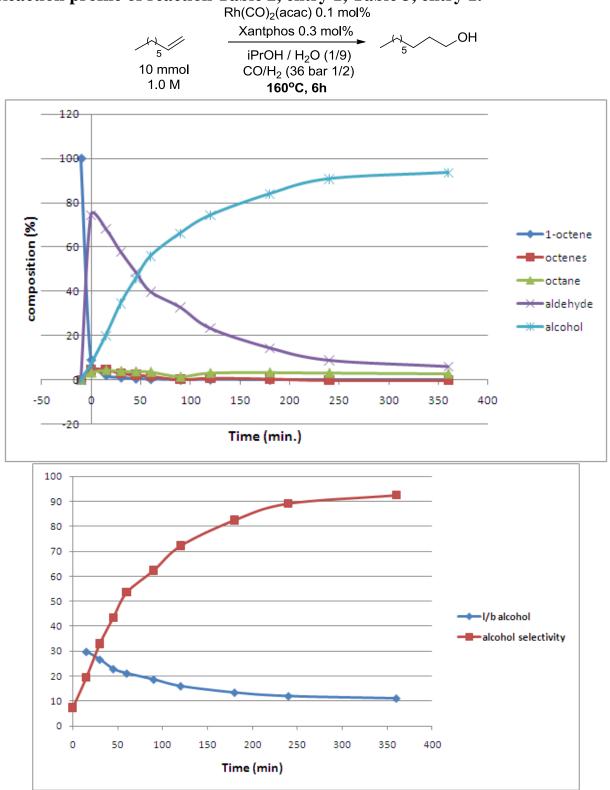
When using Xantphos as ligand, the solvent (water-isopropanol mixtures) did not need to be degassed, the reaction giving similar results with non-degassed solvents.

Calibration curves. Internal standard is n-dodecane

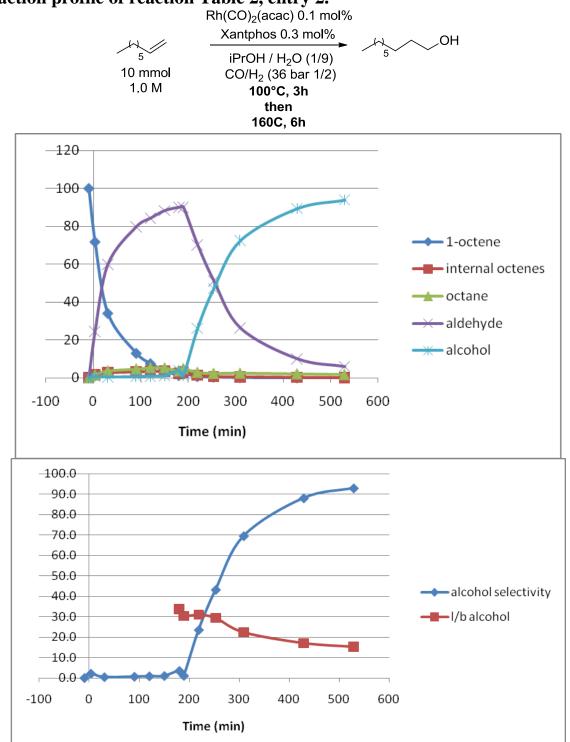
\sim	~ ~	,	₂ (acac)] S/Rh= Bu ₃ P/Rh=4		~ОН
2 mn	nol		/ H ₂ 36 bar 1/2 0°C, 60 min.		~
	entry	solvent	conversion	alcohol selectivity (%)	
	1	MeOH	61.7	5.7 ^a	
	2	H ₂ O/MeOH 1/1	7.3	>98	
	3	H ₂ O/MeOH 3/1	62.2	>98	
	4	H ₂ O/MeOH 9/1	42.0	>98	
		^a 36.1% of 1,1'-	dimethoxynon	ane was formed.	

Nonanal reduction using PBu₃ as ligand

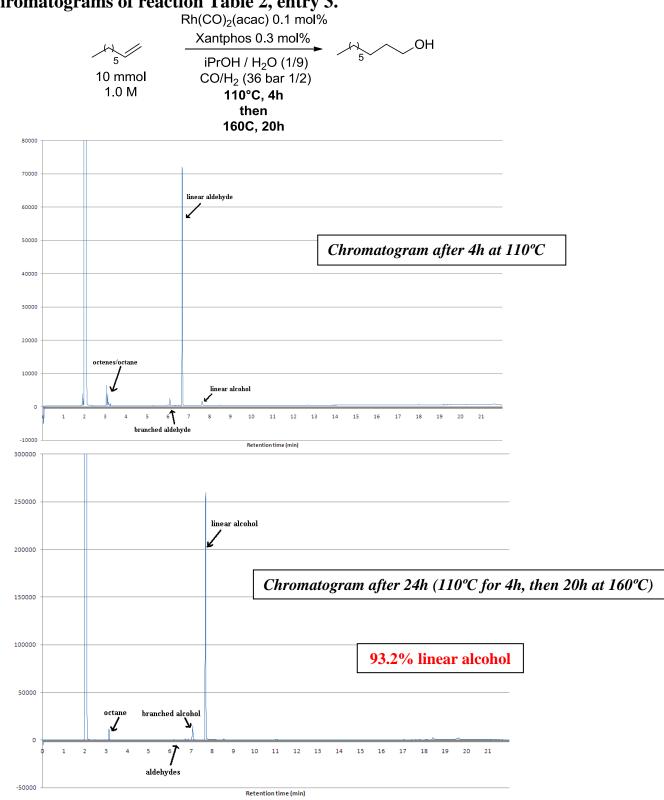
Nonanal reduction using PPh₃ as ligand


	Rh(CO) ₂ (acac) S/Rh=200	
	PPh ₃	
2 mmol 2.0 M	CO / H ₂ 1/2 36 bar 60 min	

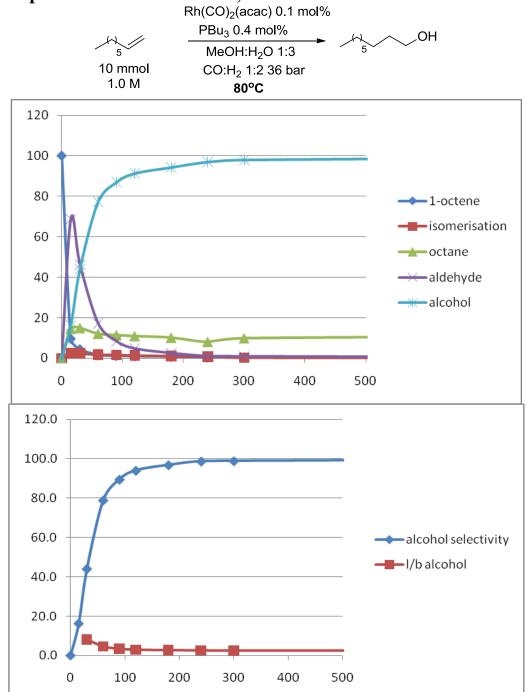
entry	solvent	P/Rh ratio	Т	conversion	alcohol selectivity (%) ^b	catalyst decomposition ^a
1	H ₂ O/MeOH 3/1	5	110	13.2	68.1	No
2	H ₂ O/MeOH 3/1	5	130	13.8	61.7	Yes
3	H ₂ O/MeOH 3/1	5	150	75.0	7.5	Yes
4	MeOH	5	110	11.0	46.2	No
5	H ₂ O/MeOH 1/1	5	110	14.3	44.7	No
6	H ₂ O/MeOH 9/1	5	110	27.4	18.0	No
7	H ₂ O/ EtOH 3/1	5	110	6.6	61.7	Yes
8	H ₂ O/ iPrOH 3/1	5	110	6.1	48.1	Yes
9	H ₂ O/toluene 3/1	5	110	7.2	31.4	Yes
10	H ₂ O/MeOH 3/1	5	90	13.6	57.3	No
11	H ₂ O/MeOH 3/1	10	90	8.2	35.7	No
12	H ₂ O/MeOH 3/1	10	110	20.0	54.9	Yes
13	H ₂ O/MeOH 3/1	20	110	15.4	55.4	Yes
14	H ₂ O/MeOH 3/1	30	110	13.5	71.8	No
15	H ₂ O/MeOH 3/1	50	110	11.6	64.9	No


^a acetals are present as traces and mainly aldol condensation products are formed. ^b black colloidal solution obtained at the end of the reaction.

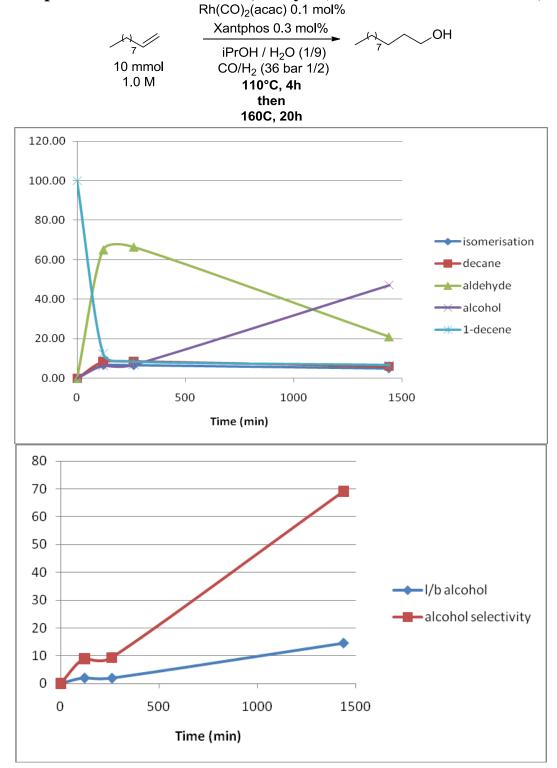
~~~~ ⁰ .			Ru ₃ (CO) ₁₂ S/Rh=200 Xantphos L/Rh = 3	$\sim$	ОН
2 mmol 2.0 M		CO:H ₂ 30 min			
entry	$T(^{o}C)$	P (CO/H ₂ )	solvent	Alcohol yield	Acetal yield
1	110	20 (0/20)	iPrOH	78	<0.2
2	110	36 (12/24)	iPrOH	0.4	<0.2
3	140	36 (12/24)	iPrOH	0.5	0.3
4	160	36 (12/24)	iPrOH	1.8	3.5
5	160	36 (12/24)	iPrOH/H ₂ O (9/1)	5.4	2
6	160	36 (12/24)	iPrOH/H ₂ O (1/1)	6.9	0.9
7	160	36 (12/24)	iPrOH/H ₂ O (1/9)	17.4	0.4
8	160	36 (12/24)	MeOH/H ₂ O (1/9)	21.8	0
9	160	36 (12/24)	toluene/H ₂ O (1/9)	23	/
10	160	36 (12/24)	EtOH/H ₂ O (1/9)	46.4	0
11	160	36 (12/24)	tAmOH/H ₂ O (1/9)	29.2	0
12	160	36 (12/24)	THF/H ₂ O (1/9)	28.4	/
13	160	36 (12/24)	$H_2O$	29.8	/


# Nonanal reduction using $Ru_3(CO)_{12}$ / Xantphos

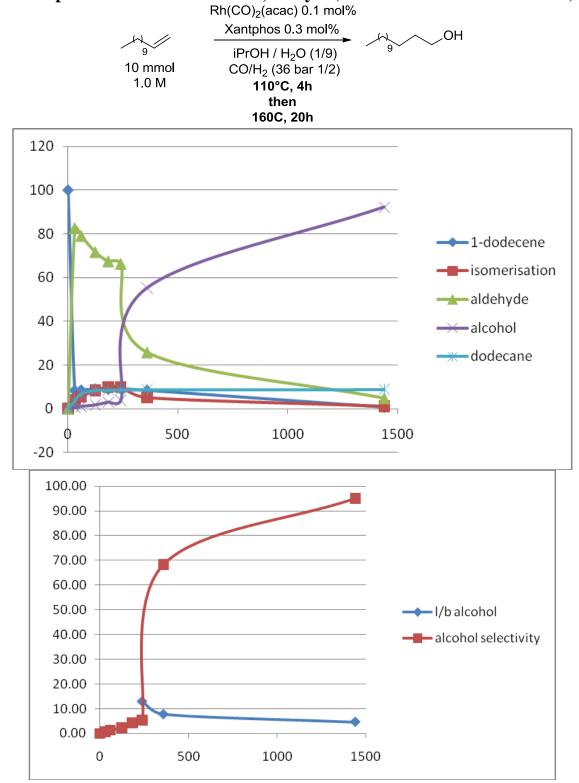



**Reaction profile of reaction Table 2, entry 1, Table 3, entry 1.** 

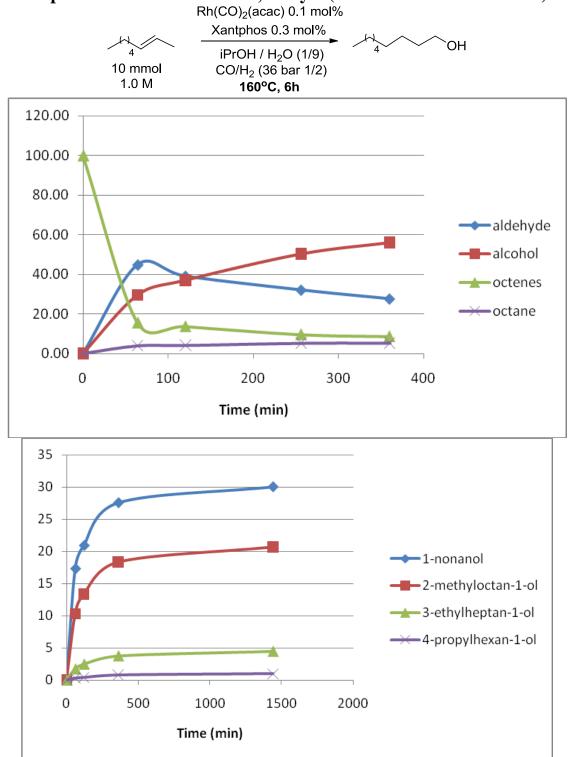



**Reaction profile of reaction Table 2, entry 2.** 

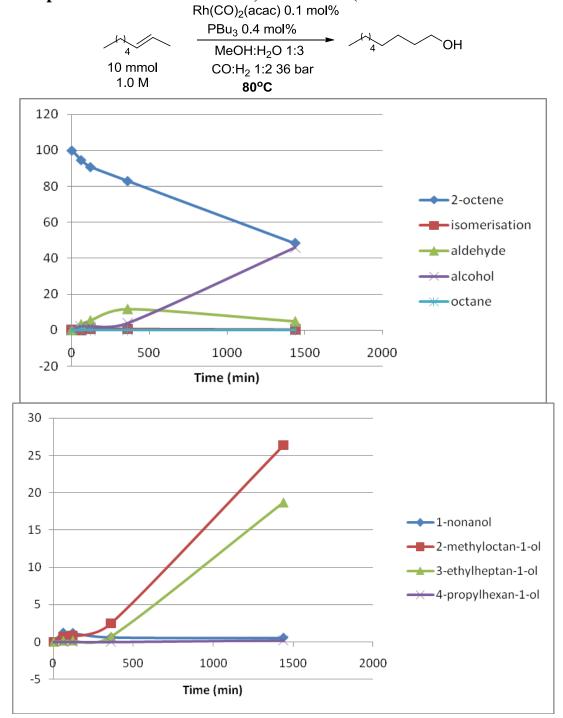



Gas chromatograms of reaction Table 2, entry 3.



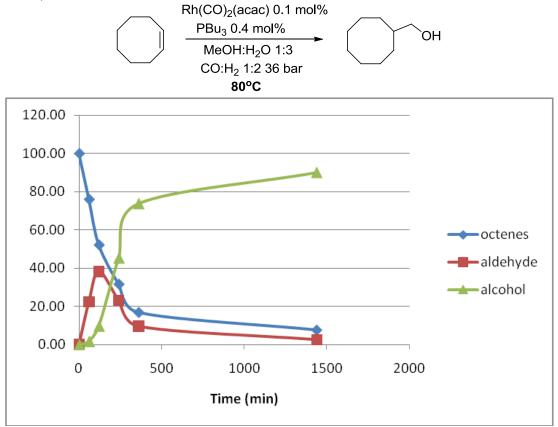

**Reaction profile of reaction Table 3, entries 3 and 4.** 




Reaction profile of reaction Table 3, entry 5 (1-decene used as substrate).



Reaction profile of reaction Table 3, entry 6 (1-dodecene used as substrate).




Reaction profile of reaction Table 3, entry 7 (2-octene used as substrate).



#### Reaction profile of reaction Table 3, entries 8-9 (2-octene used as substrate).

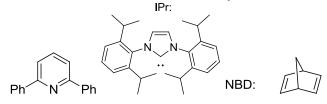
# Reaction profile of reaction Table 3, entries 10-11 (*cis*-cyclooctene used as substrate).



#### Parameter screening for cobalt-catalyzed hydroformylation of 1-octene

**Table S7.** Pressure and temperature optimization using  $Co_2(CO)_8$  as catalyst.

<u> </u>	~ ~ ~		Co ₂ (CC	)) ₈ (1 mol'	%Co)	$\sim$	
				CO / H ₂ ene, 120 i	min	+	
entry	T⁰C	$P(H_2)$	P(CO)	Conv.	octane	aldehyde/	l/b
entry	10	(bar)	(bar)	alco	alcohol	ratio*	
1	170	50	25	100	2.9	0.9	1.0
2	170	24	12	100	6.8	0.1	1.0
3	150	24	12	100	6.3	3.0	1.0
4	130	24	12	93.8	9.9	18.6	1.4
5	110	24	12	89.5	9.5	65.7	1.8
6	110	18	18	87.4	13.4	>100	1.7


0

* ratio linear branched for combined aldehydes and alcohols products

Table S8. Various ligands at 110°C.

		Co ₂ (CO) ₈	(1 mol%(	Co) + L	$\sim$			
	$\checkmark$	CO / H ₂	36 bars (	1/2)		+ HO		
		toluene,	110ºC, 12	20 min	$\sim$	$\sim \sim$		
-	ontru	L (L/Co ratio)	Conv.	ootono	aldehyde/	l/b		
_	entry	L(L/C0  fatto)	Conv.	octane	alcohol	ratio*		
-	1	None	89.5	9.5	65.7	1.8		
	2	$2,6-Ph_2$ -pyridine (4)	91.1	8.7	>100	2.0		
	3	$P^{n}Bu_{3}(1)$	0	0	n.d.	n.d.		
	4	IPr (1)	0	0	n.d.	n.d.		
	5	NBD (10)	91.9	9.5	82.3	1.8		
	6	PBr ₃ (1)	4.0	0	>100	n.d.		
:	* ratio linear branched for combined aldehydes and alcohols products							

* ratio linear branched for combined aldehydes and alcohols products



	$\checkmark$		Co ₂ (CO) ₈ (1 m CO / H ₂ 36 b toluene, 12	oars (1/2)	→	+	HO
E	Entry	T⁰C	L (L/Co ratio)	conv.	octane	aldehyde/	l/b
						alcohol	ratio*
	1	110	none	89.5	9.5	65.7	1.8
	2	110	$P^{n}Bu_{3}(1)$	0	0	n.d.	n.d.
	3	150	none	100	6.3	3.0	1.0
	4	150	$P^{n}Bu_{3}(2)$	37	14	7.7	7.5
	5	150	$PPh_3(2)$	58.8	22	12.3	2.2
	6	150	$P(N-pyrrolyl)_3(2)$	16.1	4.5	>100	1.2
	7	150	$PPh_2(2-OMe-C_6H_4)(2)$	75.5	19.8	12.9	1.7
	8	150	$P(O-2,4-^{t}Bu_{2}-C_{6}H_{3})_{3}(2)$	99.3	7.7	6.0	1.4
	9	150	PCy ₃ (2)	42.5	20.4	6.8	5.9

Table S9. Various ligands at 110°C and 150°C.

* ratio linear branched for combined aldehydes and alcohols products