One-step synthesis of CdS-TiO₂-chemically reduced graphene oxide composites

via microwave-assisted reaction for visible-light photocatalytic degradation of

methyl orange

Tian Lv^a, Likun Pan^a, *, Xinjuan Liu^a, Ting Lu^a, Guang Zhu^a, Zhuo Sun^a, Changqing Sun^b

^aEngineering Research Center for Nanophotonics & Advanced Instrument,

Ministry of Education, Department of Physics, East China Normal University, Shanghai

200062, China

^bSchool of Electrical and Electronic Engineering, Nanyang Technological University,

Singapore 639798 Singapore

Email: <u>lkpan@phy.ecnu.edu.cn</u>

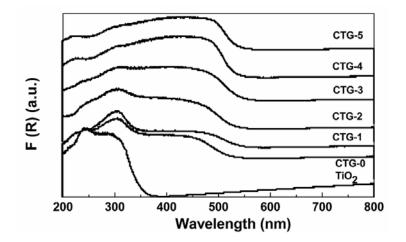


Fig. S1. Diffuse reflectance spectra of TiO₂, CTG-0, CTG-1, CTG-2, CTG-3, CTG-4 and CTG-5.

The diffuse reflectance spectra was investigated through Kubelka-Munk function: $K/S=F(R)=(1-R)^2/2R$, to approximate the optical absorbance precisely, as shown in Fig. S1. The scattering is noted as S and reflectance is noted as R. The reflectance relates to the absorption coefficient α (K/S) which is proportional to absorbance K. The pure TiO₂ absorbs the light at $\lambda < 350$ nm and the absorption of CdS-TiO₂-RGO composites is extended to visible light of about 500 nm due to the incorporation of CdS. The absorbance of RGO is observed at \sim 230 nm.