Electronic Supplementary Information

A simple route for preparation of well-stable CuO nanoparticles for enzymeless glucose detection

Sen Liu,^a Jingqi Tian,^{a,b} Lei Wang,^a Xiaoyun Qin,^a Yingwei Zhang,^a Yonglan Luo,^a

Abdullah M. Asiri,^{c,d} Abdulrahman O. Al-Youbi^{c,d} and Xuping Sun^{a,c,d}*

^a State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied

Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China

^b Graduate School of the Chinese Academy of Sciences, Beijing 100039, China

^c Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia

^dCenter of Excellence for Advanced Materials Research, King Abdulaziz University,

Jeddah 21589, Saudi Arabia

*To whom correspondence should be addressed. Tel/Fax: 0086-431-85262065. E-mail: sunxp@ciac.jl.cn.

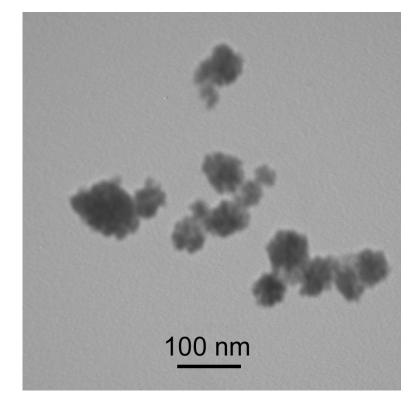
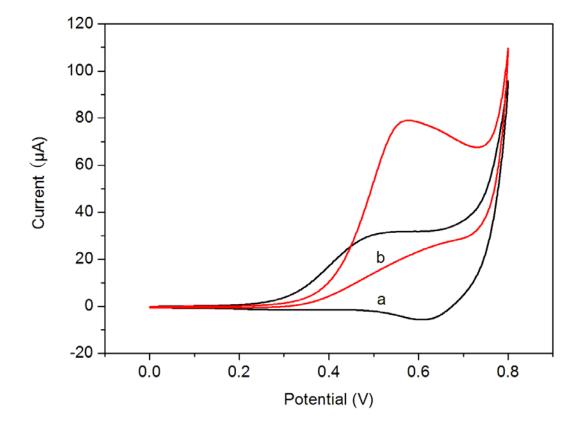



Fig. S1 TEM image of CuO nanoparticles obtained by heating aqueous $Cu(OAc)_2$ and urea solution in the absence of PQ11.

Fig. S2 CVs of CuO nanoparticles modified GCE (a: obtained in the absence of PQ11, b: obtained in the presence of PQ11) in 0.1 M NaOH in the presence of 1 mM of glucose (scan rate: 0.02 V/s).

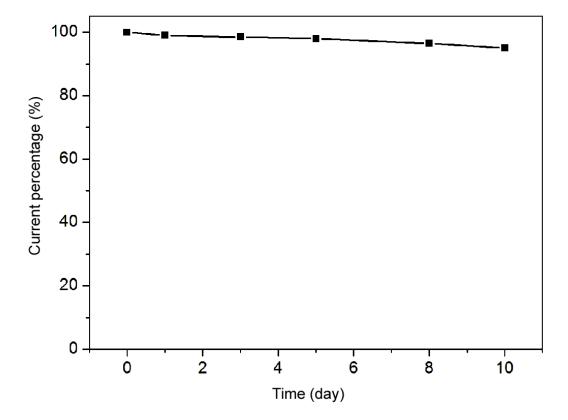


Fig. S3 The variation in the response current of the CuO/GCE toward 100 μ M glucose in 0.1 M NaOH for 10 days (scan rate: 0.02 V/s).