Non-hydrolytic sol-gel route to highly active MoO₃-SiO₂-Al₂O₃ metathesis catalysts

Damien P. Debecker^{*a}, Karim Bouchmella^b, Mariana Stoyanova^c, Uwe Rodemerck^c, Eric M. Gaigneaux^a and P. Hubert Mutin^{*b}

^{*a*} Institute of Condensed Matter and Nanoscience - MOlecules, Solids and reactiviTy (IMCN / MOST). Université catholique de Louvain. Croix du Sud 2/17, 1348 Louvain-La-Neuve, Belgium. <u>damien.debecker@uclouvain.be</u>; Tel: 0032 10 47 3665 ; Fax : 0032 10 47 3649 ^{*b*} Institut Charles Gerhardt, UMR 5253 CNRS-UM2-ENSCM-UM1.Université de Monpellier 2, cc 1701, 34095 Montpellier cedex 5,France. <u>hubert.mutin@univ-montp2.fr</u>; Tel : 0033 4 6714 3852

^c Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Str. 29a, 18059 Rostock, Germany

Supplementary materials

Catalyst name	SiCl ₄ (g)	$AlCl_{3}(g)$	MoCl ₅ (g)	$^{i}Pr_{2}O\left(g\right)$	CH_2Cl_2 (ml)
NH_0_10	7.733	-	0.572	8.258	20
NH_5_10a	7.196	0.394	0.570	8.400	20
NH_10_10	7.027	0.773	0.567	8.248	20
NH_15_10	6.309	1.178	0.572	8.258	20
NH_20_10	5.885	1.563	0.568	8.145	20
NH_25_10	5.519	1.874	0.575	8.187	20
NH_45_10	3.860	3.548	0.565	7.914	20
NH_65_10	2.209	5.101	0.569	7.710	20
NH_80_10	0.926	6.311	0.570	7.710	20
NH_90_10	-	7.062	0.571	7.454	20
NH_5_5	5.858	0.278	0.188	6.677	14
NH_5_10b	4.499	0.263	0.384	6.347	14
NH_5_15	4.793	0.245	0.568	5.885	14
NH_5_20	4.280	0.230	0.751	5.719	14

Table S1. Amount of reactants involved in each catalyst preparation

Figure S1. N_2 adsorption and desorption isotherms for binary catalysts (NH_0_10 and NH_90_10). Both samples are mesorporous.

Figure S2. N_2 adsorption and desorption isotherms for catalysts with different MoO₃ content. The MoO₃ loading (between 5 and 20 wt. %) does not affect significantly the texture.

Figure S3. N_2 adsorption and desorption isotherms for NH_Y_10 catalysts that are not sketched in Fig. 1. When the alumina content is between 15 and 45 wt. %, the texture is very similar.

Figure S4. XRD diffractograms of (a) NH_0_10, (b) NH_5_10a, (c) NH_10_10, (d) NH_15_10 and (e) NH_20_10. The other samples present similar patterns (see also Debecker et al. Chem Mater 2009).

Figure S5. NH₃-TPD thermograms obtained from the different catalysts with different Al content.