## **Electronic Supplementary Information**

## Ru/Al<sub>2</sub>O<sub>3</sub> catalyzed N-oxidation of tertiary amines by using H<sub>2</sub>O<sub>2</sub>

# Pitchaimani Veerakumar,<sup>a</sup> Subramanian Balakumar,<sup>b</sup> Murugesan Velayudham,<sup>c</sup> Kuang-Lieh Lu<sup>c</sup> and Seenivasan Rajagopal<sup>a\*</sup>

<sup>a\*</sup>Department of Physical Chemistry, School of Chemistry, Madurai Kamaraj

University, Madurai, 625 021, India.

<sup>b</sup>Department of Chemistry, PSN College of Engineering and Technology, Tirunelveli, 627 152, India.

<sup>c</sup>Institute of Chemistry, Academia Sinica, Taipei, 115, Taiwan.

| Table of Contents                                                                                          |         |  |
|------------------------------------------------------------------------------------------------------------|---------|--|
| S1. Materials and reagents                                                                                 | P2      |  |
| S2. Synthesis of catalyst I                                                                                | P2      |  |
| S3. A larger-scale (100 mmol scale) preparation of N-oxides                                                | P2      |  |
| S4. Additional HRTEM images of catalyst I                                                                  | P3      |  |
| S5. HRTEM images of after third cycle                                                                      | P4      |  |
| S6. Physicochemical and textual properties of the $\gamma$ -Al <sub>2</sub> O <sub>3</sub> and catalyst I. | P5      |  |
| S7. Hydrogen chemisorption data of catalyst I                                                              | P6      |  |
| S8. BET and Langmuir linear plots of the $\gamma$ -Al <sub>2</sub> O <sub>3</sub> and catalyst I           | P7      |  |
| S9. SEM-EDX observation of catalyst I                                                                      | P8      |  |
| S10. UV-visible spectroscopy                                                                               | P9      |  |
| S11. Oxygen transfer reactions of N-oxides                                                                 | P9      |  |
| S12. Catalyst I reuse                                                                                      | P10     |  |
| S13. NMR data of N-oxides                                                                                  | P11-P12 |  |
| S14. NMR spectra of N-oxides                                                                               | P13-P15 |  |
| S15. FT-IR spectra of some N-oxides                                                                        | P16-P18 |  |
| S16. References                                                                                            | P18     |  |

\*Corresponding author: Tel.: +91 452 2458246; Fax: +91 452 2459105.

Email address: rajagopalseenivasan@yahoo.com (Prof. S. Rajagopal).

#### S1.*Materials and reagents*

Pyridine, *N*,*N*'-dimethyl aniline (DMA), *para*-substituted N,N-dimethyl anilines (*p*-methyl, *p*-cyano, *p*-bromo and *p*-carboxy), quinoline, phenazine, quinoxaline, pyrazine, morpholine, triphenylamine, 2,2'-bipyridine (2,2''-Bipy) and 4,4'-bipyridine (4,4'-Bipy) were purchased from Aldrich and used as such. Dichloromethane (Merck), HPLC grade acetonitrile and 30%  $H_2O_2$  were used as received.

#### S2.Synthesis of Catalyst I

The synthetic procedure for the catalyst **I** is briefly given here and more details can be found in our earlier report [1]. Briefly, RuCl<sub>3</sub> (0.1434 g,  $5.25 \times 10^{-4}$  M), and PVP (0.5828 g,  $5.25 \times 10^{-3}$  M, as monomeric unit) were dissolved in 1,2-propanediol (100 mL) under stirring to form a dark red solution and refluxed. The color of the solution changed from dark red to yellow and then turned to deep green and finally to dark brown. The dark brown colored (RuNPs) solution was then left to cool to room temperature. After impregnation of the RuNPs onto the alumina nano surface, a black solid (Catalyst I) was collected and dried under vacuum at room temperature and calcinated at 500 °C for 8 h and stored in a closed container.

### S3. A larger-scale (100 mmol scale) preparation of N-Oxides

Into a glass reactor were successively placed catalyst **I** (5.0 mol %) with respect to amine and  $H_2O_2$ ), amine (100 mmol), 30% aqueous  $H_2O_2$  (100 mmol), and CH<sub>3</sub>CN (50 mL). The reaction mixture was stirred at 293 K depending upon the reaction time. Then, acetonitrile was removed by evaporation. Into the resulting solution, the aqueous solution saturated with brine was added followed by the extraction of the products with 30: 40 ratio of dichloromethane:methanol (3×20 mL). The organic phase was dried over MgSO<sub>4</sub> and concentrated under reduced pressure. n-hexane/ethyl acetate (50 mL, 60/40, v/v) was added to the concentrated solution. The isolation of N-oxides was carried out by column chromatography on silica gel (60-120 mesh) using n-Hexane/ethyl acetate (60/40, v/v) as an eluent, giving of pure N-oxide as a product.

S4. Additional HRTEM images of catalyst I



*Figure 1*. Additional HRTEM micrographs of the ruthenium nanocatalyst **I** (a-d).

# S5.HRTEM images of catalyst I after the third cycle



Figure 2. HRTEM images (a) and (b) after the third cycle.

、

# S6. Physicochemical and textual properties of the $\gamma$ -Al<sub>2</sub>O<sub>3</sub> and catalyst I.

| Measurements                                                                                           | γ-Al <sub>2</sub> O <sub>3</sub> | Catalyst I                |
|--------------------------------------------------------------------------------------------------------|----------------------------------|---------------------------|
|                                                                                                        |                                  |                           |
| Surface area                                                                                           |                                  |                           |
| Single point surface area at $P/Po = 0.300$                                                            | 25.7369 m²/g                     | 22.7390 m²/g              |
| BET Surface Area                                                                                       | 26.5489 m²/g                     | 24.1558 m²/g              |
| Langmuir Surface Area                                                                                  | 42.4125 m²/g                     | 40.0367 m <sup>2</sup> /g |
| t-Plot External Surface Area                                                                           | 29.2283 m²/g                     | 26.3543 m²/g              |
| t-Plot Micropore area                                                                                  | 0.1946 m <sup>2</sup> /g         | 0.1456 m <sup>2</sup> /g  |
| BJH Adsorption cumulative surface area<br>of pores between 17.000 Å and 3000.000<br>Å diameter         | 26.119 m²/g                      | 23.737 m²/g               |
| BJH Desorption cumulative surface area<br>of pores between 17.000 Å and 3000.000<br>Å diameter         | 26.0178 m²/g                     | 21.0252 m²/g              |
| Pore Volume                                                                                            |                                  |                           |
| Single point adsorption total pore volume<br>of pores less than $689.174$ Å diameter at<br>P/Po = 0.97 | 0.132667 cm³/g                   | 0.054809 cm³/g            |
| t-Plot micropore volume                                                                                | 0.000073 cm³/g                   | -0.002794 cm³/g           |
| BJH Adsorption cumulative volume of<br>pores between 17.000 Å and 3000.000 Å<br>diameter               | 0.216778 cm³/g                   | 0.121114 cm³/g            |
| BJH Desorption cumulative volume of<br>pores between 17.000 Å and 3000.000 Å<br>diameter               | 0.216482 cm³/g                   | 0.119332 cm³/g            |
| Pore Size                                                                                              |                                  |                           |
| Adsorption average pore width (4V/A by BET)                                                            | 219.6848 Å                       | 182.5783 Å                |
| BJH Adsorption average pore diameter (4V/A)                                                            | 331.987 Å                        | 204.091 Å                 |
| BJH Desorption average pore diameter (4V/A)                                                            | 332.820 Å                        | 227.027 Å                 |

.

| H <sub>2</sub> - Adsorption |          | $H_2$ - Desorption      |          |
|-----------------------------|----------|-------------------------|----------|
| Weight % H <sub>2</sub>     | Absolute | Weight % H <sub>2</sub> | Absolute |
|                             | Pressure |                         | Pressure |
|                             | (mmHg)   |                         | (mmHg)   |
| 0.001557                    | 1.430162 | 0.049726                | 850.0068 |
| 0.009012                    | 11.03804 | 0.047442                | 785.4033 |
| 0.016974                    | 30.45373 | 0.045872                | 735.3377 |
| 0.021255                    | 59.95316 | 0.044121                | 685.443  |
| 0.023083                    | 80.08102 | 0.042983                | 650.1025 |
| 0.024107                    | 100.5238 | 0.04121                 | 600.3011 |
| 0.025484                    | 140.6532 | 0.039494                | 550.2545 |
| 0.026668                    | 180.461  | 0.037599                | 500.1969 |
| 0.027196                    | 200.4984 | 0.035651                | 450.1777 |
| 0.028777                    | 250.2491 | 0.03383                 | 400.2013 |
| 0.030226                    | 300.2715 | 0.032019                | 350.343  |
| 0.031572                    | 350.4329 | 0.03032                 | 300.3363 |
| 0.033353                    | 400.2528 | 0.0285                  | 250.4271 |
| 0.035143                    | 450.3754 | 0.026591                | 200.2562 |
| 0.036798                    | 500.2924 | 0.024067                | 140.3327 |
| 0.038481                    | 550.2508 | 0.022164                | 100.6373 |
| 0.040183                    | 600.1837 | 0.020766                | 80.70963 |
| 0.042033                    | 650.1796 | 0.019049                | 51.1592  |
| 0.043926                    | 700.0977 | 0.017538                | 31.02545 |
| 0.045852                    | 750.1765 | 0.015032                | 9.85792  |
| 0.047703                    | 800.0555 | 0.012546                | 0.999295 |
| 0.049726                    | 850.0068 |                         |          |

# S7. Hydrogen chemisorption data of catalyst I



S8. BET and Langmuir linear plots of the  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> and catalyst I

*Figure 3.* BET and Langmuir linear plots of the  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> (a,b) and catalyst **I** (c,d) at 77K.

S9. SEM-EDX observation of catalyst I



*Figure 4.* SEM pictures of catalyst I: (a) 40 K× magnification, (b) 100 K× magnification and (c) EDX analysis of catalyst I.





Data Type: Counts Mag: 2500 Acc. Voltage: 20.0 kV

## S10. UV-visible spectroscopy



*Figure 5.* The absorption spectrum of PDO in CH<sub>2</sub>Cl<sub>2</sub> solvent.

# S11. Oxygen transfer reactions of N-oxides



Figure 6. Oxygen transfer reactions of N-oxides.

# S12. Catalyst I reuse

Oxidation of phenazine catalyzed by catalyst **I** for different cycles<sup>a</sup>

| Catalyst I | Substrate                             | Product        | Yield<br>(%) |
|------------|---------------------------------------|----------------|--------------|
| Fresh      |                                       |                | 98           |
| Cycle 1    |                                       |                | 95           |
| Cycle 2    | N N N N N N N N N N N N N N N N N N N |                | 90           |
| Cycle 3    |                                       | N <sup>t</sup> | 87           |

<sup>a</sup>Reaction conditions: Phenazine (2.0 mmol), solvent (3.0 mL),  $H_2O_2$  (6.0 mmol), and catalyst I (0.25 mol%).

<sup>b</sup>Determined by TLC and NMR method.

<sup>c</sup>Yield = No. of moles of *N*-oxide / No. of moles of amine.

RT= Room temperature.

# S13. NMR data of N-oxides



**Pyridine N-oxide** (Table 1 entry 1): Colorless solid [2]; <sup>1</sup>H-NMR (300 Hz, CDCl<sub>3</sub>): δ 7.32-7.45 (m, 3H), 8.23-8.36 (m, 2H); <sup>13</sup>C-NMR (75 MHz, CDCl<sub>3</sub>) δ 125.9, 125.9, 139.0



**4-Picoline N-oxide** (Table 1 entry 2): White solid **[2]**; <sup>1</sup>H-NMR (300 MHz, D<sub>2</sub>O):  $\delta$  2.31 (s, 3H), 7.44 (d, J = 6.9Hz, 2H), 8.14 (d, J = 6.9Hz, 2H); FT-IR (KBr, cm<sup>-1</sup>) 2941, 1432-1490, 1180-1248, 1046, 859, 758.



N,N-Dimethyl aniline N-oxide (Table 1 entry 3): Yellow colored hygroscopic solid<sup>78</sup>; <sup>1</sup>H-NMR (300 MHz, CDCl<sub>3</sub>): δ 3.32 (s, 6H), 7.18-7.21 (m, 3H), 7.55-7.59 (m, 2H); FT-IR (KBr, cm<sup>-1</sup>) 2941, 1587, 1492, 1351, 1219, 1190, 1162, 1063, 1030, 1000, 943, 746, 689.



**Quinoline N-oxide** (Table 1 entry 4): Colorless solid [2]; <sup>1</sup>H-NMR (300 MHz, D<sub>2</sub>O):  $\delta$  7.12-7.83 (m, 4H), 8.11-8.15 (m, 2H), 8.5 (d, J = 7.2Hz, 1H); FT-IR (KBr, cm<sup>-1</sup>) 3448, 3030, 1492, 1428, 1388, 1298, 1265, 1219, 1204, 1176, 1136, 1086, 1052, 1010, 877, 826, 763,722.



**Pyrazine N,N-dioxide.** (Table 1 entry 5): Colorless solid **[2]**; <sup>1</sup>H-NMR (300MHz, D<sub>2</sub>O): δ 8.52 (s, 4H); FT-IR (KBr, cm<sup>-1</sup>) 3028, 1652, 1599, 1441, 1391, 1315, 1221, 1042, 1002, 864, 801.



**Quinoxaline N-oxide** (Table 1, entry 6): Yellow crystals <sup>1</sup>H-NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  7.74-7.87 (m, 2H), 8.12 (d, *J* = 6.9Hz, 1H), 8.87 (s, 2H), <sup>13</sup>C-NMR (75 MHz, CDCl<sub>3</sub>):  $\delta$  118.9, 130.2, 137.4, 145.9.



**Phenazine-5,10-dioxide** (Table 1, entry 8): Red orange crystals **[3]**; <sup>1</sup>H-NMR (300 MHz, CDCl<sub>3</sub>): δ ppm 7.82-7.87 (m, 4H), 8.70 (d, *J* = 7.2Hz, 4H) <sup>13</sup>C-NMR (75 MHz, CDCl<sub>3</sub>): δ 120.1, 131.1, 136.0.



**2,2'-bipyridine N-dioxide** (Table 1, entry 9): Light grey white solid [4]; FT-IR (KBr, cm<sup>-1</sup>): 1250.



**4,4'-bipyridine N-dioxide** (Table 1, entry10): Grey white solid **[4]**; <sup>1</sup>H-NMR (300 MHz, D<sub>2</sub>O):  $\delta$  7.60 (d, J = 7.8Hz, 4H). 8.52 (d, J = 7.8Hz, 4H).



**Triphenylphosphine oxide**. Colorless solid **[5]**; <sup>1</sup>H-NMR (300 MHz, CDC1<sub>3</sub>): δ 7.43- 7.68 (m, 15H).

S14. NMR spectra of some N-oxides



Figure 7. <sup>1</sup>H-NMR spectrum of pyridine N-oxide (Table 3.1, entry 1).



Figure 8. <sup>13</sup>C-NMR spectrum of pyridine N-oxide (Table 1, entry 1).



Figure 9. <sup>1</sup>H-NMR spectrum of quinoxaline N-oxide (Table 1, entry 6).



Figure 10. <sup>13</sup>C-NMR spectrum of quinoxaline N-oxide (Table 1, entry 6).



Figure 11. <sup>1</sup>H-NMR spectrum of phenazine-5,10- dioxide (Table 1, entry 8).



Figure 12. <sup>13</sup>C-NMR spectrum of phenazine-5, 10- dioxide (Table 1, entry 8).

S15. FT-IR spectra of some N-oxide products



Figure 13. FT-IR spectrum of pyridine-N-oxide (Table 1, entry 1).



Figure 14. FT-IR spectrum of quinoline-N-oxide (Table 1, entry 4).



Figure 15. FT-IR spectrum of quinoxaline-1,4-dioxide (Table 1, entry 6).



Figure 16. FT-IR spectrum of triphenyl amine-N-oxide (Table 1, entry7).



Figure 17. FT-IR spectrum of phenazine 5,10-dioxide (Table 1, entry 8).

# S16. References

- P. Veerakumar, Zong-Zhan Lu, M. Velayudham, Kuang-Lieh Lu, S. Rajagopal J. Mol. Catal. A: Chem. 332 (2010) 128-137.
- [2] M. Ramakrishna Prasad, G. Kamalakar, G. Madhavi, S. J. Kulkarni, K. V. Raghavan, J. Mol. Catal. A: Chem. 186 (2002) 109.
- [3] A. Nansathit, S. Apipattarakul, C. Phaosiri, P. Pongdontri, S. Chanthai, C. Ruangviriyachai, Walailak J. Sci. Tech 6 (2009) 79.
- [4] D. J. Hoffart, N. C. Habermeh, S. J. Loe, Dalton Trans., (2007) 2870.
- [5] Z. Zhu, J. H. Espenson, J. Mol. Catal. A: Chem. 103 (1995) 87.