Electronic Supplementary Information

Highly Selective Raney Fe@HZSM-5 Fischer–Tropsch Synthesis Catalyst for Gasoline Production: One-Pot Synthesis and Unexpected Effect of Zeolite

Bo Sun,^{*a*} Guobin Yu,^{*a*} Jun Lin,^{*b*} Ke Xu,^{*a*} Yan Pei,^{*a*} Shirun Yan,^{*a*} Minghua Qiao,^{**a*} Kangnian Fan,^{*a*} Xiaoxin Zhang,^{*c*} and Baoning Zong^{**c*}

^a Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, P. R. China. Fax: 86-21-65641740; Tel: 86-21-55664679; E-mail: mhqiao@fudan.edu.cn

^b Key Laboratory of Nuclear Analysis Techniques, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, P. R. China. Fax: 86 21 3919 4775 1740; Tel: 86 21 3919 4775; E-mail: jlin1978@gmail.com

^c State Key Laboratory of Catalytic Materials and Reaction Engineering, Research Institute of Petroleum Processing, Beijing 100083, P. R. China. Fax: 86-10-82368011; Tel: 86-10-82368011; E-mail: zongbn.ripp@sinopec.com

1. Preparation

(1) Preparation of the Fe₅₀Al₅₀ alloy

The Fe₅₀Al₅₀ alloy (Fe/Al, w/w) was provided by Changling Catalyst Corp., Sinopec. The alloy was prepared by a single roller melt-spinning method. Equal weights of metallic Fe and Al were melted and kept at 1573 K in a vacuum induction furnace for 30 min to ensure the homogeneity of the melt. Alloy ribbons with a cross section of ~ $0.02 \times 2 \text{ mm}^2$ were obtained by spraying the melt onto a high-speed rotation water-cooled copper roller under the blanket of Ar. The ribbons were ground, sieved, and the 40-80-mesh fraction was used throughout the experiments. All other chemicals were of analytical grade (A.R., Sinopharm) and without further purification prior to use.

(2) Preparation of the R-Fe@HZSM-5 Catalyst

1.0 g of Fe₅₀Al₅₀ alloy was mixed with 45 mL of zeolite synthesis solution containing distilled water and ethanol, with TPAOH (60% solution) as the template, tetraethyl orthosilicate (TEOS) as the Si source, and transferred into a 50 mL-capacity Teflon-lined stainless steel autoclave. The molar ratios of the reactants were TPAOH: TEOS: EtOH: $H_2O = 1$: 4: 16: 240. The autoclave was sealed and heated at 453 K for 48 h. The resulting powders were filtered off, washed several times with distilled

water to pH value below 8. The sample was then dried at 373 K for 10 h, followed by calcination at 823 K for 4 h.

(3) Preparation of the Raney Fe Catalyst

A 1.0-gram portion of the Fe₅₀Al₅₀ alloy was added to an aqueous solution of KOH (8.0 M, 12 mL) at 343 K under gentle stirring for 2 h. The black powders were washed thoroughly with distilled water to neutrality, followed by washing with absolute ethanol to replace water. When removing the liquid, one must ensure that a thin layer of liquid always covers the pyrophoric Raney Fe powders. The as-prepared Raney Fe catalyst was stored under ethanol for activity testing and characterization.

(4) Preparation of the Physically Mixed R-Fe–HZSM-5 Catalyst

For the preparation of the physically mixed R-Fe–HZSM-5 catalyst, pure HZSM-5 with Si/Al ratio identical to that in the R-Fe@HZSM-5 core–shell catalyst was synthesized. TPAOH was used as the template, TEOS as the Si source, and aluminum isopropoxide as the Al source. The composition of HZSM-5 zeolite precursor solution was at a molar ratio of 22.5TPAOH: 63SiO₂: 1Al₂O₃: 36EtOH: 540H₂O. The Teflon-lined stainless autoclave was sealed and heated at 453 K for 48 h. The resulting powders were filtered off, washed several times with distilled water until its pH value was below 8. The sample was then dried at 373 K for 10 h and calcined at 823 K for 4 h. The R-Fe–HZSM-5 catalyst was prepared by evenly mixing the as-synthesized HZSM-5 with the above-prepared Raney Fe in a weight ratio similar to that in the R-Fe@HZSM-5 core–shell catalyst.

2. Characterization

(1) N₂ Physisorption

The Brunauer–Emmett–Teller (BET) surface area (S_{BET}) and porosity were acquired by N₂ physisorption at 77 K on a Micromeritics TriStar3000 apparatus. Prior to the measurements, the catalysts were degassed at 423 K under a N₂ flow for 2 h.

(2) Temperature-Programmed Desorption of NH₃ (NH₃-TPD)

NH₃-TPD was performed in a flow system. The catalyst was activated in He at 673 K for 1 h, after which the catalyst was saturated by 10 vol% NH₃/He gas flow at

393 K for 2 h. Then, the sample is purged with He for 2 h in order to remove gaseous and physisorbed NH_3 . The catalyst was heated in He at a rate of 20 K min⁻¹ for NH_3 desorption. The amount of NH_3 desorbed was monitored by TCD.

(3) X-Ray Diffraction (XRD)

Powder XRD pattern was acquired on a Bruker AXS D8 Advance X-ray diffractometer using Ni-filtered Cu K α radiation ($\lambda = 0.15418$ nm). The tube voltage was 40 kV, and the current was 40 mA.

(4) Scanning Electron Microscopy (SEM)

The morphology and microstructure were observed a Philips XL30 scanning electron microscope operating at 20 kV, to which an EDX analyzer was attached.

(5) ⁵⁷Fe Mössbauer Spectroscopy

⁵⁷Fe Mössbauer spectrum was recorded on a spectrometer constructed by the Key Laboratory of Nuclear Analysis Techniques, Chinese Academy of Sciences, using a ⁵⁷Co/Rh irradiation source. All spectra were acquired using the constant acceleration transmission mode at room temperature. The velocity was calibrated by a 25 µm-thick α -Fe foil, and the *IS* value was referenced to α -Fe at room temperature.

3. Activity Testing

Prior to the FTS reaction, the R-Fe@HZSM-5 sample (1.0 g) diluted with quartz powder (80-100 mesh, 1.0 g) was reduced *in situ* in 5% H₂/Ar (50 mL min⁻¹) for 16 h at 723 K (ramping rate 2 K min⁻¹). Catalytic testing was conducted on a tubular fixed-bed reactor with inner diameter of 10 mm under reaction conditions of 2: 1 (v/v) H₂/CO (flow rate 33.3 mL min⁻¹), 543 K, and 2.0 MPa, if not specified. FTS products were analyzed on line with two gas chromatographs equipped with two high-temperature Valco six-port valves. A TDX-01 packed column connected to a thermal conductivity detector (TCD) was used to analyze H₂, N₂, CO, CH₄, and CO₂. Hydrocarbons (C₁–C₃₀) were analyzed with a PONA capillary column connected to a flame ionization detector (FID). The hydrocarbon selectivities were calculated on carbon basis.

Catalyst	$S_{\rm BET}$ $(m^2 g^{-1})$	V_{pore} (cm ³ g ⁻¹)	d _{pore} (nm)	Fe/Zeolite (weight ratio)	NH_3 uptake (μ mol g ⁻¹)	SiO ₂ /Al ₂ O ₃ (Molar ratio)
Raney Fe	60	0.16	10.5	-	-	-
R-Fe-HZSM-5	199	0.17	7.8	87.0/13.0	64.5	63
R-Fe@HZSM-5	171	0.12	6.5	87.5/12.5	56.1	63

Table S1Textural and chemical properties of Raney Fe, R-Fe–HZSM-5, and R-Fe@HZSM-5catalysts

Catalyst	Persetion conditions	Selectivity	Yield	Ref	
Catalyst	Reaction conditions	(C ₅ –C ₁₁)	(C ₅ -C ₁₁)	Kel.	
D Ex@UZSM 5	$T = 543$ K, $P = 2.0$ MPa, $H_2/CO = 2$,	71%	66%	This	
K-LG@UT22W-2	$W_{\text{cat.}}/F_{(\text{CO+H2})} = 10 \text{ g h/mol}$			work	
D E QUZSM 5	$T = 543$ K, $P = 2.0$ MPa, $H_2/CO = 1$,	720/	65%	This	
K-FE@HZSM-3	$W_{\text{cat.}}/F_{(\text{CO+H2})} = 10 \text{ g h/mol}$	15%		work	
H7SM 5/fused iron	$T = 573$ K, $P = 1.0$ MPa, $H_2/CO = 1$,	180%	46%	[\$1]	
TIZSWI-5/Tused-Itoli	$W_{\text{cat.}}/F_{(\text{CO+H2})} = 10 \text{ g h/mol}$	4870			
Fused iron/H7SM_5_mix	$T = 573$ K, $P = 1.0$ MPa, $H_2/CO = 1$,	40%	38%	[S1]	
1 used-1101/112/5141-5-1111X	$W_{\text{cat.}}/F_{(\text{CO+H2})} = 10 \text{ g h/mol}$	4070			
FeCuMgCaK_HZSM_5	$T = 553$ K, $P = 1.0$ MPa, $H_2/CO = 1$,	52%	59%	[\$2]	
Teeungeak Hizbin-5	$W_{\text{cat.}}/F_{(\text{CO+H2})} = 10 \text{ g h/mol}$	5270			
Fe-Cu-K/ZSM-5	$T = 573$ K, $P = 1.0$ MPa, $H_2/CO = 2$,	58%	45%	[\$3]	
	$W_{\rm cat}/F_{\rm (CO+H2)} = 11.2 \text{ g h/mol}$	2070			
FeCuLa/HZSM-5	$T = 603$ K, $P = 2.5$ MPa, $H_2/CO = 1$,	56%	-	[S4]	
rooulu nilbiir s	$W_{cat.}/F_{(CO+H2)} = 7.2 \text{ g h/mol}$	2070			
FeKCu/SiO ₂	$T = 523$ K, $P = 2.4$ MPa, $H_2/CO = 2$,	500/	210/	[07]	
(Ruhrchemie LP33/88)	$W_{cat.}/F_{(CO+H2)} = 6.2 \text{ g h/mol}$	50%	21%	[92]	

Table S2Comparison of the selectivity to gasoline-range hydrocarbons over R-Fe@HZSM-5catalyst with those over literature FTS catalysts containing Fe and HZSM-5 and typical industrialiron-based FTS catalyst

	Parameter ^a	Raney Fe	R-Fe-HZSM-5	R-Fe@HZSM-5
Sextet 1	$IS \text{ (mm s}^{-1}\text{)}$	0.18(2)	0.17(3)	0.17(7)
$(\chi - Fe_5C_2)$	$QS \text{ (mm s}^{-1}\text{)}$	0.07(2)	0.07(8)	0.07(8)
	<i>Н</i> (Т)	18.3(5)	18.4(1)	18.2(9)
	Γ (mm s ⁻¹)	0.43(9)	0.43(7)	0.35(8)
	A (%)	8.9	10.5	16.4
Sextet 2	$IS \text{ (mm s}^{-1}\text{)}$	0.25(7)	0.25(3)	0.23(1)
$(\chi - Fe_5C_2)$	$QS \text{ (mm s}^{-1}\text{)}$	0.18(5)	0.11(6)	0.11(3)
	<i>Н</i> (Т)	22.9(6)	23.3(1)	23.0(8)
	Γ (mm s ⁻¹)	0.29(4)	0.38(2)	0.38(2)
	A (%)	9.9	10.2	17.0
Sextet 3	$IS \text{ (mm s}^{-1}\text{)}$	0.26(9)	0.26(4)	0.27(3)
$(\chi - Fe_5C_2)$	$QS \text{ (mm s}^{-1}\text{)}$	0.04(6)	0.04(4)	0.03(5)
	<i>H</i> (T)	10.4(6)	10.4(4)	10.4(2)
	Γ (mm s ⁻¹)	0.32(8)	0.32(9)	0.29(4)
	A (%)	5.7	7.7	8.7
Sextet 4	$IS \text{ (mm s}^{-1}\text{)}$	-0.01(8)	-0.02(8)	-0.01(4)
(Fe ⁰)	$QS \text{ (mm s}^{-1}\text{)}$	0.09(9)	0.09(7)	0.09(3)
	<i>Н</i> (Т)	33.3(1)	33.3(8)	33.2(4)
	Γ (mm s ⁻¹)	0.33(5)	0.29(1)	0.35(9)
	A (%)	7.8	5.8	3.9

Table S3 Room-temperature ⁵⁷Fe Mössbauer parameters for Raney Fe, R-Fe–HZSM-5, and R-Fe@HZSM-5 catalysts after *ca.* 150 h on stream

Electronic Supplementary Material (ESI) for Catalysis Science & Technology This journal is C The Royal Society of Chemistry 2012

Sextet 5	$IS \text{ (mm s}^{-1}\text{)}$	0.65(4)	0.64(8)	0.64(3)
(Fe(II/III); Fe ₃ O ₄)	$QS \text{ (mm s}^{-1}\text{)}$	-0.02(5)	-0.03(2)	-0.02(4)
	<i>Н</i> (Т)	45.4(4)	45.7(8)	45.8(5)
	$\Gamma(\mathrm{mm~s}^{-1})$	0.49(4)	0.45(6)	0.50(1)
	A (%)	33.8	32.8	33.6
Sextet 6	$IS \text{ (mm s}^{-1}\text{)}$	0.28(3)	0.28(2)	0.19(4)
(Fe(III); Fe ₃ O ₄)	$QS \text{ (mm s}^{-1}\text{)}$	-0.01(5)	-0.01(1)	-0.01(7)
	<i>Н</i> (Т)	49.0(3)	48.9(6)	48.9(9)
	$\Gamma(\mathrm{mm~s}^{-1})$	0.30(1)	0.30(2)	0.29(5)
	A (%)	23.5	21.5	14.2
Sextet 7	$IS \text{ (mm s}^{-1}\text{)}$	0.34(9)	0.33(6)	
(Fe(III) in iron oxide)	$QS \text{ (mm s}^{-1}\text{)}$	0.01(5)	0.02	
	<i>H</i> [T]	50.9(5)	50.2	N/A
	$\Gamma(\mathrm{mm~s^{-1}})$	0.49(3)	0.54(5)	
	A (%)	10.4	11.5	
Doublet	$IS \text{ (mm s}^{-1}\text{)}$			0.33(4)
(superparamagnetic	$QS \text{ (mm s}^{-1}\text{)}$	27/4	N/A	0.79(1)
(spm) Fe(III))	<i>Н</i> (Т)	IN/A		0.57(2)
	$\Gamma(\mathrm{mm~s}^{-1})$			6.2

^{*a*} IS: Isomer shift (relative to α -Fe); QS: quadrupole shift for sextet and quadruple splitting for doublet; Γ : full line width at half maximum; *H*: hyperfine magnetic field; *A*: relative spectral area. Numbers in parentheses provide the uncertainty in the last digit.

Fig. S1 Evolution of CO conversion versus time-on-stream (TOS) over (a) R-Fe@HZSM-5, (b) R-Fe-HZSM-5, and (c) Raney Fe under reaction conditions of T = 543 K, H₂/CO = 2, P = 2.0MPa, and $W_{\text{Fe}}/F_{(\text{CO} + \text{H2})} = 10$ g h mol⁻¹. \Box and Δ represent the C_{iso}/C_n and C⁼/C_n molar ratios over (a) versus TOS, respectively.

Fig. S2 NH₃-TPD profiles of HZSM-5, physically mixed R-Fe–HZSM-5, and R-Fe@HZSM-5.

Fig. S3 Hydrocarbon selectivities over R-Fe@HZSM-5 against the reaction time in the FTS reaction.

References

- [S1] J. Bao, G. Yang, Y. Yoneyama and N. Tsubaki, Appl. Catal. A, 2011, 394, 195.
- [S2] Y. Yoneyama, J. He, Y. Morii, S. Azuma and N. Tsubaki, Catal. Today, 2005, 104, 37.
- [S3] O. O. James, A. M. Mesubi, T. C. Ako and S. Maity, Fuel Processing Technol., 2010, 91, 399.
- [S4] A. N. Pour, Y. Zamani, A. Tavasoli, S. M. K. Shahri and S. A. Taheri, Fuel, 2008, 87, 2004.
- [S5] G. P. van der Laan and A. A. C. M. Beenackers, Ind. Eng. Chem. Res., 1999, 38, 1277.