Electronic Supplementary information

Catalase-like activity of the polyoxovanadate anion $[Mn^{IV}V_{13}O_{38}]^{7}$: A mechanistic study.

Sanchita Chakrabarty,*^a and Rupendranath Banerjee*^a

Department Of Chemistry, Jadavpur University, Kolkata 700 032, India

Contents	Page
Table 1: Representative kinetic data	S2
Table 2: Table for stoichiometric measurement	S2
Fig. S1: IR spectra of the complex	S 3
Fig.S 2: TG/DTA of the complex	S4
Fig. S3: Study of H ₂ O ₂ decomposition by spectrophotometric method	S4
Fig. S4: Spectral change of 1 with time after addition of H_2O_2 .	S5
Fig. S5: Change in absorbance of 1 with time on addition of excess H_2O_2	S6
Fig. S6: Variation of initial rate with [H ⁺]	S6
Fig. S7: Variation of initial rate with [H ₂ O ₂]	S7
Fig. S8a: ⁵¹ V NMR spectra showing the formation of diperoxovanadate	S7
Fig. S8b: ⁵¹ V NMR spectra of the complex	S8
Fig. S9: EPR spectra of the reaction mixture	S 8
Fig. S10(a, b, c): Cyclic voltammetry diagram of complex, rxn mixture and H2O2 respectively	S9-S10
Fig. S11: epr spectra of the complex solution after coulometric reduction	S10
Fig. S12: Spectrophotometric titration by ascorbic acid	S11
Derivation of rate law	S11-S12

pH	10^3 [complex],	10^{3} [H ₂ O ₂],	$10^{7}V_{i}$,
	mol dm ⁻³	mol dm ⁻³	mol dm ⁻³ s ⁻¹
3.5	0.05	1	2.57
4.0			0.93
4.3			0.6
4.6			0.67
4.9			0.54
5.2			0.47
5.4			0.42
3.5	0.05	0.25	0.95
		0.375	1.38
		0.5	1.98
3.5	0.01	1	0.42
	0.03	1	1.59
	0.075	1	3.3
4.3	0.05	0.375	0.35
		0.75	0.51
		3.0	0.63
4.3	0.02	1	0.39
	0.03		0.5
	0.075		1.29

Table S1: Representative initial rates (V_i) for the catalyzed decomposition of H₂O₂. $T_{OAc} = 0.15$ M, T = 25°C, I = 0.5 mol dm⁻³

pН	10^3 complex,	$10^3 H_2O_2$,	$10^3 \Delta[O_2],$	$\Delta[O_2] / \Delta[H_2O_2]$
	mole	mole	mol	
3.5	30	0.6	0.28	0.47
4.1	40	0.8	0.37	0.46
4.5	30	1.0	0.5	0.5

Fig. S1: IR spectra of the complex 1

Fig. S2: TG/ DTA curve of the complex 1

Fig. S3: decomposition of H₂O₂ with time. [1] = 5 ×10⁻⁵ mol dm⁻³, [H₂O₂] = 1.0 ×10⁻³ mol dm⁻³, pH = 3.8, $T_{\text{Oac}} = 0.15 \text{ mol dm}^{-3}$, $I = 0.5 \text{ mol dm}^{-3}$, $T = 25 \pm .1^{\circ}\text{C}$

Fig. S4: (a-e) Decrease in absorbance of **1** on addition of H_2O_2 at 0, 0.50, 5, 20, and 75 min respectively, followed by (f) slow rise in the absorbance. [1] = 5 ×10⁻⁵ mol dm⁻³, [H₂O₂] = 1 ×10⁻³ mol dm⁻³, pH = 3.5, ($T_{OAc} = 0.15$ M) I = 0.5 mol dm⁻³, $T = 25 \pm 0.1$ °C.

Fig. S5: decay in absorbance of 1, on addition of H₂O₂ followed by a slow rise at 450 nm. ([1] = 5×10^{-5} mol dm-3, [H2O2] = 1.0×10^{-3} mol dm-3, pH = 3.16, I = 0.5 mol dm⁻³, T_{OAc} = 0.2 mol dm⁻³, T = $25 \pm 1^{\circ}$ C

Fig. S6: V_i vs. [H⁺] plot (Slope = 0.67 s⁻¹ and intercept = 3.9×10^{-8} mol dm⁻³ s⁻¹). [1] = 5×10^{-5} mol dm⁻³, [H₂O₂] = 1.0×10^{-3} mol dm⁻³, T_{OAc} = 0.15 M, I = 0.5 mol dm⁻³, T = $25 \pm 1^{\circ}$ C

Fig. S7: $1/V_i vs 1/[H_2O_2]^2 (\bullet)$ at pH = 4.3 (Slope = 1.8×10^{-4} mol dm⁻³ s and intercept = 1.54×10^3 mol⁻¹ dm³ s; and (\blacktriangle) at pH = 3.5, Slope = 4×10^{-5} mol dm⁻³ s and intercept = 3.5×10^2 mol⁻¹ dm³ s). [1] = 5×10^{-5} mol dm⁻³ pH = $3.8 (T_{OAc} = 0.15 \text{ M})$, I = 0.5 mol dm^{-3} , T = $25 \pm 1^{\circ}$ C

Fig. S8a: 51 V NMR spectra after addition of H₂O₂

Fig. S9: epr spectra of the reaction mixture after addition of H_2O_2

S8

Fig S10a: Cyclic voltammetry diagram of the complex in acetate buffer solution (pH=3.8, $[1] = 1 \times 10^{-3}$ mol dm⁻³, scan rate = 50 mV/s using SCE as reference electrode)

Fig S10b: Cyclic voltammetry diagram of the reaction mixture in acetate buffer solution (pH=3.8, [1] = $1 \times 10^{-3} \text{ mol dm}^{-3}$, $[H_2O_2] = 2 \times 10^{-3} \text{ mol dm}^{-3}$, scan rate = 50 mV/s using SCE as reference electrode) **S9**

Fig S10c: Cyclic voltammetry diagram of H_2O_2 in acetate buffer solution (pH=3.8, [H₂O₂] = 2 x 10⁻³ mol dm⁻³, scan rate = 50 mV/s using SCE as reference electrode)

Fig. S11: epr spectra of the complex solution after coulometric reduction

Fig. S12: Spectrophotometric titration of the complex by ascorbic acid

Derivation of the rate law:

 $\begin{cases} \frac{\text{Complex protonation:}}{[\text{Mn}^{\text{IV}}\text{V}_{13}\text{O}_{38}]^{7-} + \text{H}^{+} \underbrace{K_{\text{H}}}_{\text{H}} [\text{HMn}^{\text{IV}}\text{V}_{13}\text{O}_{38}]^{6-} & (1) \\ (1) & (1_{\text{H}}) \end{cases} \\ (1) & (1_{\text{H}}) \end{cases} \\ \begin{cases} \frac{\text{Reactions of } 1}{1 + 2\text{H}_2\text{O}_2} \underbrace{K_1}_{\text{H}} [\text{Mn}^{\text{IV}} - \text{dpv}]^{7-} & (2) \\ [\text{Mn}^{\text{IV}} - \text{dpv}]^{7-} + \text{H}_2\text{O}_2 & \underbrace{k_1}_{\text{H}} [\text{Mn}^{\text{II}} - \text{dpv}]^{9-} + \text{O}_2 + 2\text{H}^+ & (3) \\ [\text{Mn}^{\text{II}} - \text{dpv}]^{9-} + \text{H}_2\text{O}_2 + 2\text{H}^+ & [\text{Mn}^{\text{IV}} - \text{dpv}]^{7-} + 2\text{H}_2\text{O} & (4) \end{cases} \\ \end{cases} \\ \begin{cases} \frac{\text{Parallel reactions of } 1_{\text{H}}}{1_{\text{H}} + 2\text{H}_2\text{O}_2} \underbrace{K_{1\text{H}}}_{\text{H}} \text{H}[\text{Mn}^{\text{IV}} - \text{dpv}]^{6-} & (5) \\ \text{H}[\text{Mn}^{\text{IV}} - \text{dpv}]^{6-} + \text{H}_2\text{O}_2 & \underbrace{k_2}_{\text{H}} & \text{H}[\text{Mn}^{\text{II}} - \text{dpv}]^{8-} + \text{O}_2 + 2\text{H}^+ & (6) \\ \text{H}[\text{Mn}^{\text{II}} - \text{dpv}]^{8-} + \text{H}_2\text{O}_2 + 2\text{H}^+ & \text{H}[\text{Mn}^{\text{IV}} - \text{dpv}]^{6-} + 2\text{H}_2\text{O} & (7) \end{cases} \end{cases}$

Assuming, $K_{\rm H}$ to be small, the total concentration of the polyoxovanadate complex is

$$T_{\rm c} = [\mathbf{1}] + [{\rm Mn}^{\rm IV} - {\rm dpv}]^{7}$$
(8)

Now, $[Mn^{IV} - dpv]^{7^{-}} = K_{1}[H_{2}O_{2}]^{2} [1]$ (from 3), and $H[Mn^{IV} - dpv]^{6^{-}} = K_{1H}K_{H} [H^{+}] [H_{2}O_{2}]^{2} [1]$ (from 6) So, $T_{c} = ([1] + K_{1}[1][H_{2}O_{2}]^{2})$ Or, $T_{c} = [1]\{1 + K_{1}[H_{2}O_{2}]^{2}\}$ Or, $[1] = T_{c}/(1 + K_{1}[H_{2}O_{2}]^{2})$ (9) Initial rate, $V_{i} = k_{1}[[Mn^{IV} - dpv]^{7^{-}}]_{+} k_{2}[H[Mn^{IV} - dpv]^{6^{-}}]$ Or, $V_{i} = (k_{1}K_{1}[H_{2}O_{2}]^{2} + k_{2}K_{1H}K_{H}[H^{+}] [H_{2}O_{2}]^{2})[1]$

Substituting [1] from equation 9 we get

$$V_{i} = \{(k_{1}K_{1}[H_{2}O_{2}]^{2} + k_{2}K_{1H}K_{H}[H^{+}][H_{2}O_{2}]^{2})T_{c}\}/\{1 + K_{1}[H_{2}O_{2}]^{2}\}$$
(10)
Or, $1/V_{i} = [1/\{[H_{2}O_{2}]^{2}(k_{1}K_{1} + k_{2}K_{1H}K_{H}[H^{+}])T_{c}\}] + [K_{1}/\{T_{c}(k_{1}K_{1} + k_{2}K_{1H}K_{H}[H^{+})\}]$ (11)