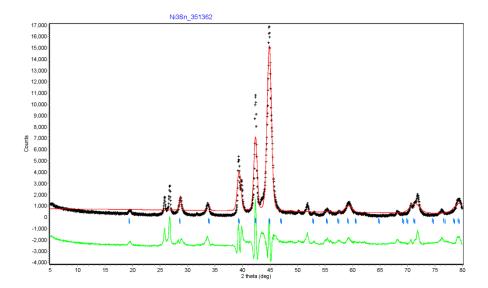
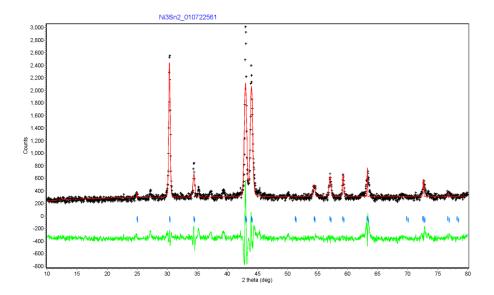
Electronic Supplementary Information for

Highly efficient and selective hydrogenation of unsaturated carbonyl compounds using Ni-Sn alloy catalysts


Rodiansono, a,b Syahrul Khairi, Takayoshi Hara, Nobuyuki Ichikuni, and Shogo Shimazu*

^aGraduate School of Engineering, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522, Japan
Tel.: +81 43 290 3379; fax: +81 43 290 3379.E-mail address: shimazu@faculty.chiba-u.jp (S. Shimazu).


^bDepartment of Chemistry, Lambung Mangkurat University, Jl. A. Yani Km 36Banjarbaru, Indonesia
70714.

Contents

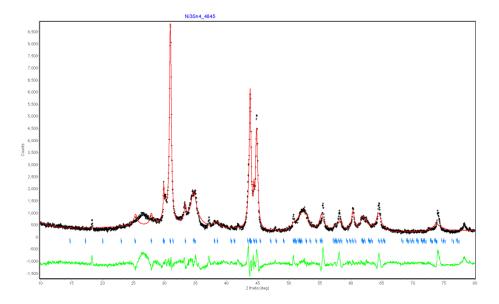

- 1. Multi-Rietveld analysis program LH-Riet profiles of powder XRD data for Ni-Sn(3.0) alloy catalyst (data from Figure 1a) (**Fig. S1**)
- 2. Multi-Rietveld analysis program LH-Riet profiles of powder XRD data for Ni-Sn(1.5) alloy catalyst (data from Figure 1b) (**Fig. S2**)
- 3. Multi-Rietveld analysis program LH-Riet profiles of powder XRD data for Ni-Sn(0.75) alloy catalyst (data from Figure 1c) (**Fig. S3**)
- 4. Results of support screening for Ni-Sn(1.5) alloy catalysts (**Table S1**).
- 5. XRD patterns of the recovered Ni-Sn(1.5)/TiO₂ alloy catalyst before and after reactivated by H₂ treatment at 673 K for 1 h (**Fig. S4**)

Fig. S1 Multi-Rietveld analysis program LH-Riet profiles of powder XRD data for Ni-Sn(3.0) alloy catalyst after H₂ treatment at 673 K (data extracted from Figure 1a). Data points (black line); calculated line (red line); difference line (green line); marker points (blue vertical line).

Fig. S2 Multi-Rietveld analysis program LH-Riet profiles of powder XRD data for Ni-Sn(1.5) alloy catalyst after H₂ treatment at 673 K (data extracted from Figure 1b). Data points (black line); calculation line (red line); difference line (green line); marker points (blue vertical line).

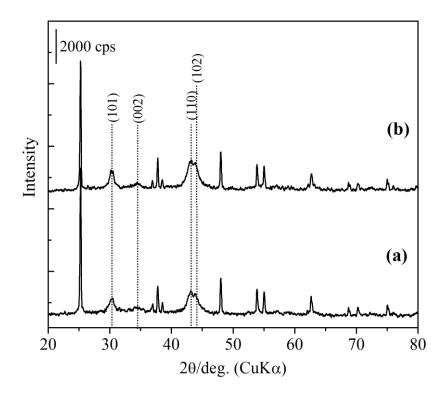


Fig. S3 Multi-Rietveld analysis program LH-Riet profiles of powder XRD data for Ni-Sn(0.75) alloy catalyst after H₂ treatment at 673 K (data extracted from Figure 1c). Data points (black line); calculation line (red line); difference line (green line); marker points (blue vertical line).

Table S1 Results of support screening for Ni-Sn(1.5) alloy catalysts

Entry	Support	Conv./%	Yield ^a .	/% Select.b/%
1	MCM-41	20	20	100 (0)
2	ZnO	62	61	99(1)
3	ZrO_2	32	32	100
4	MgO	8	0	0

Reaction conditions: FFald, 1.1 mmol (FFald/Ni ratio = 15); iso-PrOH (3 mL); H₂, 3.0 MPa, 383 K, 75 min. ^a Yield of FFalc, determined by GC using an internal standard technique. ^b Selectivity to FFalc. The value in the parenthesis is the selectivity to THFalc.

Fig. S4 XRD patterns for the recovered Ni-Sn(1.5)/TiO₂ before and after H_2 treatment at 673 K for 1 h.