H_2 dissociation over Ag/Al₂O₃: The first step in hydrogen assisted selective catalytic reduction of NO_X

Simon Klacar^{1*} and Henrik Grönbeck¹

¹Department of Applied Physics and Competence Centre for Catalysis, Chalmers University of Technology, SE-412 96 Göteborg, Sweden.

*<u>klacar@chalmers.se</u>

Electronic Supplementary Information

Herein we present the calculated low energy structures in the case of molecular and dissociated H_2 adsorption. These are referred to as the initial (I) and final (F) states, respectively. Moreover, the calculated transition state (TS) structures are reported. For the Ag@Al₂O₃(110)-b structure, only the final state is reported as no barrier for dissociation is found in this case. Finally, for clarity, we present the bare Ag@Al₂O₃(110)-a structures. All structures are presented in a top view, besides the Ag@Al₂O₃(110)-a structure which also is given in a side view. Color codes: blue, purple, red, white balls correspond to Ag, Al, O, and H respectively.

Figure S1. H_2 dissociation over Ag(111). The H-H distance is reported in Å.

1.42

Figure S2. H_2 dissociation over Ag(100). The H-H distance is reported in Å.

0.75

1.49

Figure S3. H_2 dissociation over Ag(211). The H-H distance is reported in Å.

Figure S4. H_2 dissociation over p(4x4). The H-H distance is reported in Å. Note that the barrier for H_2 dissociation is related to H diffusion over the surface, hence the H-H distance is long in the TS. The H-H distance is reported in Å.

Figure S5. H_2 dissociation over $Ag_2O(111)$. In the final state (F) formation of two OH groups is observed. The H-H distance is reported in Å.

0.76 1.05

Figure S6. H_2 dissociation over $Al_2O_3(110)$. In the initial state (I), the H_2 molecule is adsorbed over the Al_{III} site. Upon dissociation (F) electron pairing leads to formation of an Ag-H and O-H pair. The H-H distance is reported in Å.

Figure S7. The final state for dissociated H_2 over $Ag@Al_2O_3(110)$ -b.

0.76

Figure S8. Top view of molecular and dissociated H_2 adsorption over $Ag_{NPM}/Al_2O_3(110)$. Molecular adsorption occurs over the Al_{III} site and upon dissociation an Al-H and O-H pair is formed owing to electron pairing.

Figure S9. Top and side view of $Ag@Al_2O_3(110)$ -a.