Electronic Supplementary Information for

Modifications of the metal and support during the deactivation and regeneration of Au/C catalysts for the hydrochlorination of acetylene

Marco Conte,*^{*a*} Catherine J. Davies,^{*a*} David J. Morgan,^{*a*} Thomas E. Davies,^{*a*} Albert F. Carley,^{*a*} Peter Johnston,^{*b*} and Graham J. Hutchings *^{*a*}

^a Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff, CF10 3AT, UK

^b Johnson Matthey Catalysts, Orchard Road, Royston, Herts, SG8 5HE, UK

*E-mail: ConteM1@cardiff.ac.uk, Hutch@cardiff.ac.uk

Table of contents:

Fig. S1. Schematic of the TPR integration algorithm.

Fig. S2. Details of the TPR thermograms in the region 180-350 °C (Au³⁺ reduction).

Figs. S3 and S4. SEM images of the Au/C catalyst 1% wt.

Fig. S5. XRPD patterns of the Au/C catalyst 1% wt impregnated in *aqua regia* dried at different temperatures.

Fig. S6. Acetylene conversion by using catalysts impregnated in *aqua regia* drying the catalysts at different temperatures.

Fig. S7. Conversion after 5 h and Au^{3+} amount (in mmol) for Au/C catalysts containing different amount of Au^{3+} .

Fig. S8. Acetylene conversion over Au/C catalysts dried at 140 $^{\circ}$ C using different HNO₃ volume fraction in the HCl/HNO₃ preparation mixture from 0 to 0.5 HNO₃ volume fraction.

Fig. S9. XPS spectrum and simulation for a fresh Au/C catalyst.

Fig. S10. XPS spectrum and simulation for a reduced Au/C catalyst.

Fig. S11. XPS spectrum and simulation for Au/C catalyst after first re-oxidation.

Fig. S12. XPS spectrum and simulation for Au/C catalyst after second reduction.

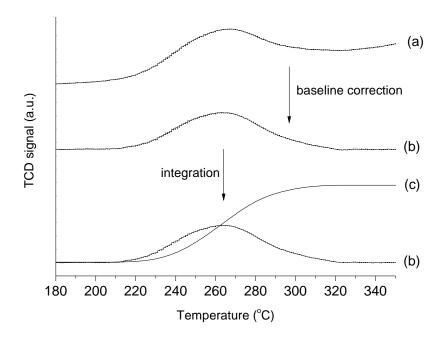
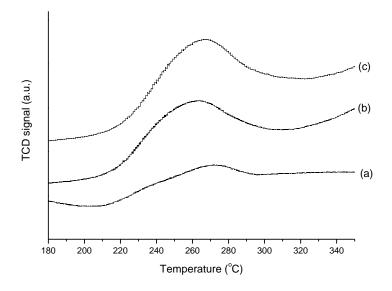
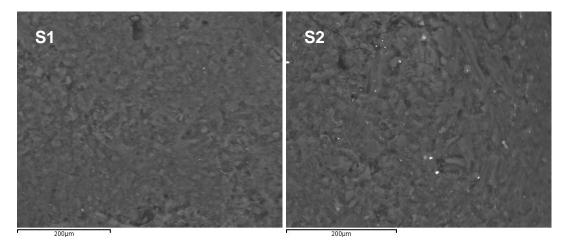
Fig. S13. XPS spectrum and simulation for Au/C catalyst after second re-oxidation.

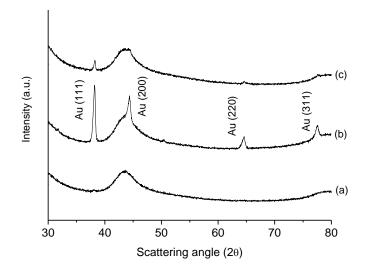
Fig. S14. XPS spectrum and simulation for Au/C catalyst after third reduction.

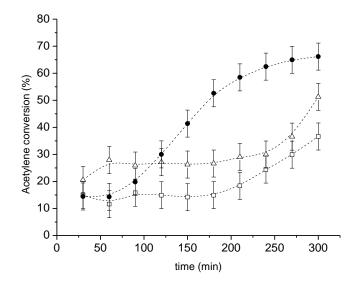
Fig. S15. XPS spectrum and simulation for Au/C catalyst after third re-oxidation.

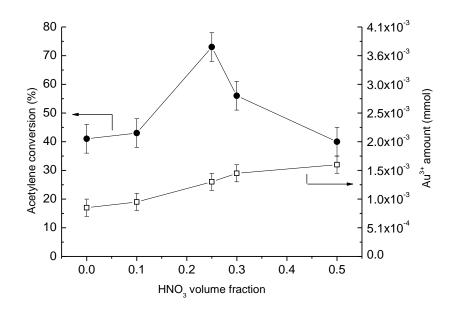
Fig. S16. N_2 adsorption isotherms for the untreated carbon, fresh Au/C catalyst and oxidised Au/C catalyst.

Fig. S17. Pore size distribution of the untreated carbon, fresh Au/C catalyst and oxidised Au/C catalyst.


Fig. S1. Procedure for the TPR area peaks determination. The Au^{3+} peak (a) was subject to baseline correction (b). A cumulative area counts in the interval 180 to 350 $^{\circ}$ C (c) was carried out.


Fig. S2. Details of the TPR thermograms in the region 180-350 $^{\circ}$ C (Au³⁺ reduction). (a) fresh catalyst, (b) first catalyst oxidation, and (c) second catalyst oxidation.


Figs. S3 and S4. SEM images of the Au/C catalyst 1% wt.

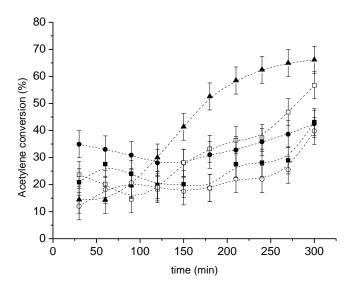

Fig. S5. XRPD patterns of the Au/C catalyst 1% wt impregnated in *aqua regia* dried at (a) 110 °C, (b) 140 °C and (c) 180 °C.

Fig. S6. Acetylene conversion by using catalysts impregnated in *aqua regia* drying the catalysts at different temperatures of: (\Box) 110, (•) 140 and (Δ) 180 °C.

Fig. S7. Conversion (•) after 5 h and $Au^{3+}(\Box)$ amount (in mmol) for Au/C catalysts containing different amount of Au^{3+} . The catalysts were obtained from impregnating solutions containing different HNO₃ volume fraction in the HCl/HNO₃ mixture.

Fig. S8. Acetylene conversion over Au/C catalysts dried at 140 °C using different HNO₃ volume fraction in the HCl/HNO₃ preparation mixture: (**■**) 0, (**●**) 0.1, (**▲**) 0.25, (**□**) 0.33 and (**○**) 0.5 HNO₃ volume fraction.

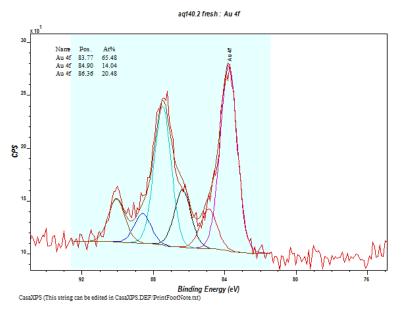


Fig. S9. XPS spectrum and simulation for a fresh Au/C catalyst.

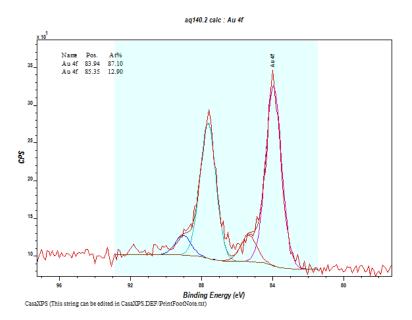


Fig. S10. XPS spectrum and simulation for a reduced Au/C catalyst.

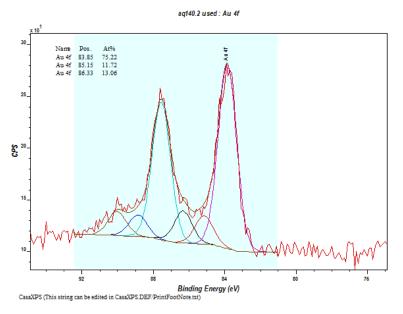


Fig. S11. XPS spectrum and simulation for Au/C catalyst after first re-oxidation.

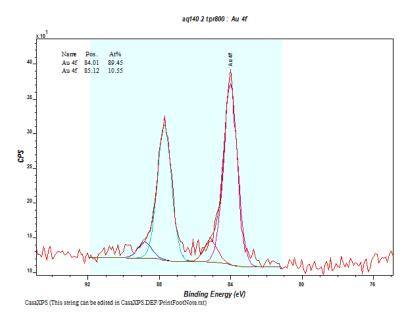


Fig. S12. XPS spectrum and simulation for Au/C catalyst after second reduction.

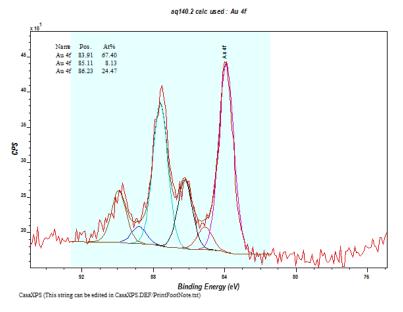


Fig. S13. XPS spectrum and simulation for Au/C catalyst after second re-oxidation.

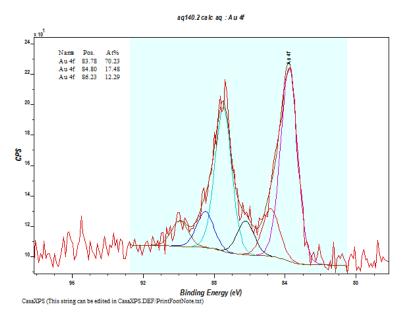


Fig. S14. XPS spectrum and simulation for Au/C catalyst after third reduction.

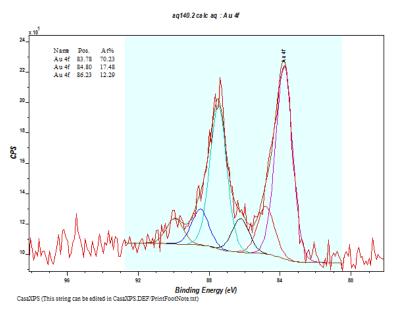
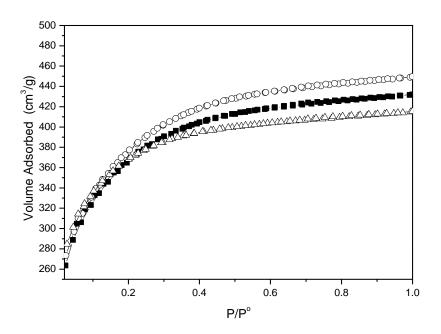
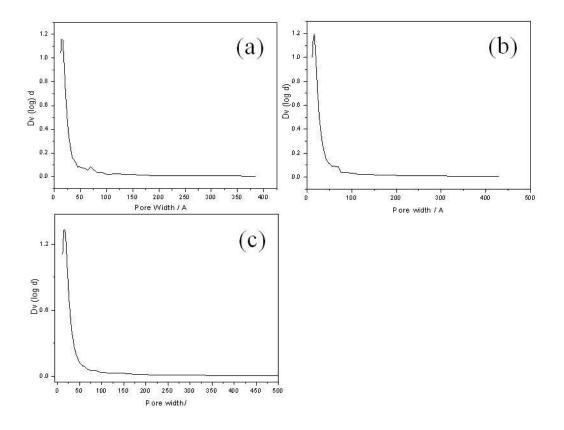




Fig. S15. XPS spectrum and simulation for Au/C catalyst after third re-oxidation

Fig. S16. N_2 adsorption isotherms measured at 77K. (Δ) untreated carbon (Norit ROX 0.8), (**•**) fresh Au/C catalyst and (\circ) Oxidised Au/C catalyst.

Fig. S17. Pore size distribution of (a) untreated carbon (Norit ROX 0.8), (b) fresh Au/C catalyst and (c) Oxidised Au/C catalyst.

Table S1 Quantification (in mmol) and identification from XPS of Au species overAu/C catalysts subejct to reduction and oxidation cycles.

Catalyst treatment	Au species (mmol)			Binding energies (eV)		
	Au ³⁺	Au ⁰	Au ⁰ -s	Au ³⁺	Au ⁰	Au ⁰ -s
fresh catalyst	1.04E-03	3.33E-03	7.11E-04	86.4	83.8	84.9
1 st reduction	0.00E+00	4.42E-03	6.55E-04	-	83.9	85.4
1 st oxidation	6.65E-04	3.82E-03	5.94E-04	86.3	83.9	85.2
2 nd reduction	0.00E+00	4.54E-03	5.38E-04	-	84	85.1
2 nd oxidation	1.24E-03	3.42E-03	4.11E-04	86.2	83.9	85.1
3 rd reduction	0.00E+00	4.57E-03	5.08E-04	-	84	85.3
3 rd oxidation	6.24E-04	3.56E-03	8.88E-04	86.2	83.8	84.8