Supporting information

Fig. 1: Ce (3d) core level XPS spectra.

Fig. 2: O (1s) core level XPS spectra.

Fig. 3: Au (4f) core level XPS spectra.

Fig. 4: Ca (2p) core level XPS spectra.

Fig. 5: Mg (2p), Ca (2p) and Ba (3d) core level XPS spectra.

Fig. 6: Ce (3d) core level XPS spectra.

Fig. 7: O (1s) core level XPS spectra.

Fig. 8: XPS survey of 2.33 Wt. % of Au on Ba-CeO₂ (Ba/Ce =4/100), Ca-CeO₂ (Ca/Ce =4/100), Mg-CeO₂ (Mg/Ce =4/100) and CeO₂

Calculation of TOF of Au/Ba-CeO₂

Taking 4mmol of Benzyl alcohol as starting reactant and considering its area % is 100.

Now, from the G.C calcultation after the reaction, Benzyl alcohol conversion is 36.8 %.

So, 100 % is 4 mmol, hence 36.8 % is 36.8 X 4 X 10^{-3} /100 moles.

From ICP result we get gold loading is 0.03 wt% (2.33 wt% Au/Ba-CeO2)

Now, 100 g support contained Au is 0.03 g

0.1 g " " " " " $0.03 \text{ X} 0.1 / 100 \text{ g} = 3 \text{ X} 10^{-5} \text{ g}$

Now, 196.97 g Au is 1 mol

$$3 \times 10^{-5} \text{ g Au is } 3 \times 10^{-5}/196.97 \text{ g} = 1.523 \times 10^{-7} \text{ mol}$$

Fig. 9: BET S. A and porosity result of Mg-CeO₂

Fig. 10: BET S.A and porosity result of Ba-CeO₂

Fig. 11: BET Surface area of CeO₂

Catalyst	Ion	Ionicity		Covalency		
-		-		-	Total	% Ionic
	Position	Area	Position	Area	Area	Contribution
CeO ₂	529.2	69632.1	531.4	42233.4	111865.5	62.2
CaCeO ₂	528.1	45535.1	530.4	24195.8	69730.9	65.3
MgCeO ₂	528.8	52944.2	530.8	37006.6	89950.8	58.8
BaCeO ₂	529.3	64614.7	531.2	32339.9	96954.6	66.6
Au/CeO ₂	529.1	66751.9	531.2	40154.6	106906.5	62.4
Au/CaCeO ₂	530.2	56192.6	532.7	40325.7	96518.3	58.2
Au/MgCeO ₂	531.3	73608.1	532.9	52557.0	126165.1	58.3
Au/BaCeO ₂	529.9	77046.9	532.6	40552.7	117599.6	65.5

Table 1. Quantitative XPS analysis

Table 2. Result of catalytic activity of 3.5 wt % gold loading in three different support towards benzyl alcohol oxidation.

Catalyst	Gold loading	Calcination	Conversion	Selectivity
	(wt %)	temperature (°C)	(%)	(%)
Au/Mg-CeO ₂	3.5	300	20.00	> 99
Au/Ca-CeO ₂	3.5	300	27.04	> 99
Au/Ba-CeO ₂	3.5	300	42.20	> 99

Table 3. Result of catalytic activity of Au/Ba-CeO₂(4 mol% Ba) with different gold loading towards benzyl alcohol oxidation.

Catalyst	Gold loading	Calcination	Conversion	Selectivity
	(wt %)	temperature (°C)	(%)	(%)
Au/Ba-CeO ₂	1.0	300	27.58	> 99
Au/Ba-CeO ₂	2.33	300	36.80	> 99
Au/Ba-CeO ₂	3.5	300	42.20	> 99
Au/Ba-CeO ₂	4.0	300	22.53	> 99

Catalyst	Gold loading	Calcination	Conversion	Selectivity
	(wt %)	temperature (°C)	(%)	(%)
Au/Ba-CeO ₂	3.5	300	42.20	> 99
Au/Ba-CeO ₂	3.5	400	27.56	> 99
Au/Ba-CeO ₂	3.5	500	21.76	> 99

Table 4. Result of catalytic activity of Au/Ba-CeO₂(4 mol% Ba) with different calcinations temperature towards benzyl alcohol oxidation.

Table 5. Result of catalytic activity of Au/Ba-CeO₂(4 mol% Ba) prepared by using different reducing agent towards benzyl alcohol oxidation.

Catalyst	Gold loading	Reducing agent	Conversion	Selectivity	
	(wt %)		(%)	(%)	
Au/Ba-CeO ₂	3.5	NaOH	42.20	> 99	
Au/Ba-CeO ₂	3.5	NaHCO ₃	38.36	> 99	
Au/Ba-CeO ₂	3.5	Urea	11.52	> 99	

Table 6. Result of catalytic activity of Au/Ba-CeO₂(4 mol% Ba) prepared by using different volume of water taken during HDP method towards benzyl alcohol oxidation.

Catalyst	Gold loading	Volume of water	Conversion	Selectivity
	(wt %)	(ml)	(%)	(%)
Au/Ba-CeO ₂	3.5	50	25.57	> 99
Au/Ba-CeO ₂	3.5	100	32.24	> 99
Au/Ba-CeO ₂	3.5	150	42.20	> 99

Table 7. XPS quantitative analysis

Catalyst	Position	Area(%)	Position	Area(%)	Position	Area(%)	Position	Area(%)	Ce ⁺³ /Ce ⁺⁴
Ce 3d(5/2)	V		V'		V	7''	V	7111	
Ce 3d(3/2)	U		U'		U	J''	U	J'''	
CeO ₂	882.4	21.2	887.0	10.4	890.0	8.0	897.9	16.7	0.3273
	900.4	13.2	904.1	9.3	908.1	8.2	916.1	12.8	
CaCeO ₂	881.5	20.0	886.1	9.6	889.0	9.4	889.6	13.0	0.2880
	903.4	8.7	903.4	8.7	907.4	9.5	915.2	13.6	
MgCeO ₂	882.1	20.1	885.9	7.6	889.4	10.7	898.0	19.3	0.2087
	901.4	13.4	905.3	7.2	908.9	8.1	916.1	13.7	
BaCeO ₂	882.7	19.2	887.6	9.5	890.8	9.1	898.2	13.1	0.2449
	900.2	15.0	904.4	9.6	908.7	10.4	916.5	14.1	
Au/CeO ₂	882.3	18.5	886.8	11.6	890.3	8.2	899.7	14.2	0.3550
-	890.3	8.2	902.7	9.2	907.6	11.8	915.8	13.7	
Au/CaCeO ₂	883.2	20.3	887.9	11.5	901.5	16.5	898.6	14.4	0.3768
_	901.5	16.5	906.3	10.0	909.9	6.9	917.1	13.0	
Au/MgCeO ₂	883.4	18.9	887.7	8.6	901.9	14.4	899.1	16.3	0.2749
0 -	901.9	14.4	905.9	9.2	909.7	8.7	917.2	13.4	
Au/BaCeO ₂	882.6	19.5	886.6	10.5	890.2	10.1	898.5	16.6	0.3180
	901.1	12.4	904.9	8.9	908.6	9.0	916.4	12.9	5.0105

Table 8. Conc. of PhCHO vs. Area (%) of FID.

Conc. of PhCHO (M) in DMF	Area % (FID)
0.026	0.520
0.050	1.133
0.251	7.014
0.501	13.743
1.004	25.967
1.258	31.572
1.502	35.004
2.000	43.383
2.506	49.624
3.012	54.363

Fig. 12: PhCHO Calibration

Table 9. Conc. of PhCH₂OH vs. Area (%) of FID.

Conc. of PhCH ₂ OH(M) in DMF	Area % (FID)
0.051	0.362
0.254	3.873
0.501	9.557
1.007	20.346
1.251	25.190
1.502	29.884
2.003	37.211
2.502	44.801
3.001	49.538

Fig. 13: PhCH₂OH Calibration

Table 10. G.C. Calculation

Calibration Factor (C.F.) of PhCH₂OH =1/0.05722 Calibration Factor (C.F.) of PhCHO =1/0.05184

Area % of PhCH₂OH (Before Reaction) =100 Moles of PhCH₂OH(Before Reaction)=100/C.F.

Moles of PhCH₂OH(Before Reaction)=100/C.F = 5.722

After Reaction								
	Gold Loading	Area % of	Moles of	Area % of	Moles of	Total	% Mass	
Catalyst	wt.%	PhCH ₂ OH	PhCH₂OH	PhCHO	PhCHO	Moles	Balance	
CeO2	_	97.370	5.571	2.630	0.136	5.707	99.70	
Mg-CeO2	_	97.911	5.602	2.089	0.108	5.710	99.76	
Ca-CeO2	_	98.701	5.647	1.299	0.067	5.714	99.85	
Ba-CeO2	_	96.131	5.500	3.869	0.200	5.700	99.57	
Au/CeO2	2.33	93.889	5.372	6.111	0.316	5.688	99.32	
Au/Mg-CeO2	2.33	88.055	5.038	11.945	0.619	5.657	98.67	
Au/Ca-CeO2	2.33	79.815	4.567	20.185	1.046	5.613	97.76	
Au/Ba-CeO2	2.33	67.000	3.833	33.000	1.710	5.543	96.33	
Au/Mg-CeO2	3.50	79.601	4.554	20.399	1.057	5.611	97.73	
Au/Ca-CeO2	3.50	80.378	4.599	19.622	1.017	5.616	97.82	
Au/Ba-CeO2	3.50	60.031	3.434	39.969	2.071	5.505	95.56	

Energy dispersive spectrometer (EDS): Elemental analysis of the catalysts before and after the reaction was carried out using an electron probe micro-analyzer (EPMA) instrument (JXA-8600 M, JEOL, Japan) equipped with an energy dispersive spectrometer (EDS). EPMA is widely used for in situ non destructive chemical analysis of minute solid samples. For the analysis, powder samples were first placed on a conductive carbon tape mounted on the sample holder and carbon coat was applied using JEOL JEE-420 Vacuum Evaporator. Quantitative analysis was performed using the EDS with a magnification of 65x and applied voltage of 15kV.

Table 11. Quantitative EDS analysis of dopants

% of dopant	% of dopant aftar
before reaction	reaction
0.25	0.23
3.57	2.27
0.62	1.04
	% of dopant before reaction 0.25 3.57 0.62

Fig. 14: EDS analysis of Mg-CeO₂ (Mg/Ce = 4/100): (a) before reaction, (b) after reaction.

Fig. 15: EDS analysis of Ba-CeO₂ (Ba/Ce = 4/100) : (a) before reaction, (b) after reaction.

Fig. 16: EDS analysis of Ca-CeO₂ (Ca/Ce = 4/100) : (a) before reaction, (b) after reaction.