Dismantling the salen framework: design of new asymmetric silylcyanation catalysts.

Jérémy Ternel, Pascal Roussel, Francine Agbossou-Niedercorn and Régis. M Gauvin

Supporting Information

General methods	2
Preparation and characterization of ligands 1a-j	3
Preparation and characterization of complex 2a	7
Preparation and characterization of complex 3a	8
Preparation and characterization of complex 3 j	8
General procedure for 1a-j-Al catalyzed asymmetric cyanosilylation of aldehydes	9
General procedure for 3a catalyzed asymmetric cyanosilylation of aldehydes	9
Table S1. Influence of the $1a$ -AlEt ₂ Cl ratio on the catalytic performances.	11
Table S2. Influence of the cocatalyst on the catalytic performances.	11
Table S3. Influence of the substrate concentration on the catalytic performances.	12
Table S4. Influence of the amount of TMSCN on the catalytic performances.	12
Table S5. Crystal data and structure refinement for complex 2	13

General Methods: All reagents and solvents were commercial grade and purified prior to use when necessary. ¹H and ¹³C NMR were acquired on a Bruker 300 MHz instrument. Chemical shifts are measured relative to residual solvent peaks as an internal standard set to $\delta = 7.26$ ppm and $\delta = 77.1$ ppm (CDCl₃) for ¹H and ¹³C, respectively. Enantiomeric excesses were determined with a Shimadzu instrument (Chirasil-DEX CB, 25m*0.25 mm column). Absolute configurations were determined by comparison the known order of elution of the two enantiomers or the sign of optical rotation with literature data.¹ Infrared spectra were recorded on a Nicolet 6700 FTIR. Elemental analyses were conducted with a VarioMIRO Superuser automatic analyzer in the UCCS, Villeneuve d'Ascq, or from Steven Boyer, in London Metropolitan University, for air-sensitive compounds. For the crystal structure determination of **2a**, diffraction data were collected at 100 K using a Bruker X8 APEX2 apparatus. Crystal data and details of data collection and structure refinement for the different compounds are given in Table S5. All substrates, TMSCN, substituted salicylaldehydes and (1*R*,2*R*)-diamines were purchased from Acros, Aldrich, and Fluka, and were used without further purification. Solvents and substrates were purified by conventional methods.

¹ a) K. Yoshinaga and T. Nagata, *Adv. Synth. Catal.*, 2009, **351**, 1495; b) N. Kurono, K. Arai, M. Uemura and T. Ohkuma, *Angew. Chem. Int. Ed.*, 2008, **47**, 6643; c) W. B. Yang and J. M. Fang, *J. Org. Chem.*, 1998, **63**, 1356.

Preparation of ligands 1a-j:

To a solution of the selected aminosulfonamide (1 mmol) in dichloromethane (5 ml), a mixture of the selected salicylaldehyde derivative (1 mmol) in dichloromethane (3ml) was added at room temperature. The mixture was stirred overnight. MgSO₄ was then added, the mixture was filtered and evaporated to dryness. After crystallization in ethanol, yellow crystals were obtained.

Ligand 1a: Yield = 95%. ¹H NMR (CDCl₃, 300 MHz, δ ppm): 13.00 (s, 1H, OH), 8.18 (s, 1H, CH=N), 7.40 (d, ³*J* = 8.1 Hz, 2H, *H*_{*p*-Tolyl}), 7.25–7.02 (m, 2H, *H*_{PhOH}), 6.95 (d, ³*J* = 8.1 Hz, 2H, *H*_{*p*-Tolyl}), 4.90 (d, ²*J* = 6.3 Hz, 1H, NH), 3.27-3.20 (m, 1H, CH-N), 3.04-2.96 (m, 1H, CH-NH), 2.24 (s, 3H, CH₃), 2.40-2.30 (m, 1H, CH₂), 1.49 (s, 9H, *t*-Bu), 1.28 (s, 9H, *t*-Bu), 1.62-1.21 (m, 7H, CH₂). ¹³C NMR (CDCl₃, 75 MHz, δ ppm): 168.8 (CH=N), 158.0 (C-OH), 142.1, 140.6, 137.9, 136.9, 129.1, 127.9, 126.9, 126.4, 117.6 (C_{Ar}), 71.9 (CH-N), 57.5 (CH-NH), 35.5, 34.5, 33.2, 32.4, 31.8, 29.9, 24.2, 23.7, 21.9. IR(KBr): v = 3300-2853 (large, vO-H), 3277 (vN-H), 2948 (vC_{sp2}-H_{Ar}), 1629 (vC=N), 1322, 1257, 1169, 1066 cm⁻¹.

Ligand 1b: Yield = 94%. ¹H NMR (CDCl₃, 300 MHz, δ ppm): 13.30 (s, 1H, OH), 8.18 (s, 1H, CH=N), 7.63 (d, ${}^{3}J$ = 8.1 Hz, 2H, $H_{p-\text{Tol}}$), 7.34 (d, ${}^{3}J$ = 7.6 Hz, 1H, H_{PhOH}), 7.01 (d, ${}^{3}J$ = 8.1 Hz, 2H, $H_{p-\text{Tol}}$), 6.96 (d, ${}^{3}J$ = 7.6 Hz, 1H, H_{PhOH}), 6.77 (t, J = 7.6 Hz, 1H, H_{PhOH}), 4.9 (d, J = 6.2 Hz, 1H, NH), 3.27-3.20 (m, 1H, CH-N), 3.04 -2.96 (m, 1H, CH-NH), 2.24 (s, 3H, CH₃), 2.41-2.31 (m, 1H, CH₂), 1.46 (s, 9H, *t*-Bu), 1.60-1.21 (m, 7H, CH₂). ¹³C NMR (CDCl₃, 75 MHz, δ ppm): 166.2 (CH=N), 160.1 (C-OH), 143.1, 137.3, 137.0, 129.9, 129.5, 126.7, 126.6, 118.3, 117.8 (C_{Ar}), 71.7 (CH-N), 57.5 (CH-NH), 34.9, 33.6, 32.9, 29.4, 24.3, 23.7, 21.4. IR(KBr): v = 3300-2800 (large, vO-H), 3293 (vN-H), 2939 (vC_{sp2}-H_{AR}), 1628 (vC=N), 1320,

1267, 1166, 1062 cm⁻¹. Elemental Anal. Calculated for $C_{24}H_{32}N_2O_3S$ (428.21 g.mol⁻¹): C 67.26; H 7.53; N 6.54; S 7.48; found 67.68; H 7.77; N 6.48; S 7.15.

Ligand 1c: Yield = 93%. ¹H NMR (CDCl₃, 300 MHz, δ ppm): 12.30 (s, 1H, O*H*), 8.20 (s, 1H, C*H*=N), 7.63 (d, ³*J* = 8.1 Hz, 2H, *H*_{*p*-Tol}), 7.34 (d, ³*J* = 7.6 Hz, 1H, *H*_{PhOH}), 7.10 (s, 1H, *H*_{PhOH}), 6.99 (d, ³*J* = 8.1 Hz, 2H, *H*_{*p*-Tol}), 6.82 (d, ³*J* = 7.6 Hz, 1H, *H*_{PhOH}), 4.83 (d, ³*J* = 6.2 Hz, 1H, N*H*), 3.27-3.20 (m, 1H, C*H*-N), 3.02-2.98 (m, 1H, C*H*-NH), 2.27 (s, 3H, C*H*₃), 2.41-2.32 (m, 1H, C*H*₂), 1.30 (s, 9H, *t*-Bu), 1.61-1.21 (m, 7H, C*H*₂). ¹³C NMR (CDCl₃, 75 MHz, δ ppm): 165.5 (*C*H=N), 158.5 (*C*-OH), 143.1, 141.2, 137.3, 129.6, 129.5, 127.8, 126.6, 117.7, 116.3 (*C*_{Ar}), 72.3 (*C*H-N), 57.3 (*C*H-NH), 33.9, 33.6, 33.3, 31.4, 24.4, 23.6, 21.6. IR(KBr): v = 3300-2800 (large, vO-H), 3301 (vN-H), 2938 (vC_{sp2}-H_{AR}), 1635 (vC=N), 1315, 1269, 1167, 1066 cm⁻¹. Elemental Anal. Calculated for C₂₄H₃₂N₂O₃S (428.21 g.mol⁻¹): C 67.26; H 7.53; N 6.54; S 7.48; found 67.57; H 7.77; N 6.43; S 7.10.

Ligand 1d: Yield = 90%. ¹H NMR (CDCl₃, 300 MHz, δ ppm): 8.12 (s, 1H, OH), 8.07 (s, 1H, CH=N), 8.05 (dd, ${}^{3}J$ = 9.2 Hz, ${}^{4}J$ = 2.6 Hz, 1H, H_{PhOH}), 7.94 (d, ${}^{4}J$ = 2.4 Hz, 1H, H_{PhOH}), 7.50 (d, ${}^{3}J$ = 8.0 Hz, 2H, H_{p-Tol}), 6.95 (d, ${}^{3}J$ = 8.0 Hz, 2H, H_{p-Tol}), 6.83 (d, ${}^{3}J$ = 9.3 Hz, 1H, H_{PhOH}), 4.89 (d, ${}^{3}J$ = 8.2 Hz, 1H, NH), 3.36-3.28 (m, 1H, CH-N), 3.04-2.96 (m, 1H, CH-NH), 2.24 (s, 3H, CH₃), 2.3-2.4 (m, 1H, CH₂), 1.80-1.20 (m, 7H, CH₂). ¹³C NMR (CDCl₃, 75 MHz, δ ppm): 168.3(CH=N), 163.9 (C-OH), 145.2, 143.1, 138.8, 137.8, 129.5, 128.1, 127.8, 126.5, 118.4, 116.8 (C_{Ar}), 71.3 (CH-N), 57.1 (CH-NH), 33.5, 33.2, 24.6, 23.6, 21.4. IR(KBr): v = 3300-2800 (large, vO-H), 3278 (vN-H), 2933 (vC_{sp2}-H_{AR}), 1632 (vC=N), 1322, 1267, 1160, 1064 cm⁻¹. Elemental Anal. Calculated for C₂₀H₂₃N₃O₅S (417.48 g.mol⁻¹): C 57.54; H 5.55; N 10.07; S 7.68; found C 57.05; H 5.46; N 10.67; S 7.35.

Ligand 1e: Yield = 90%. ¹H NMR (CDCl₃, 300 MHz, δ ppm): 14.85 (s, 1H, OH), 8.20 (s, 1H, CH=N), 8.10 (d, ⁴J = 2.5 Hz, 1H, H_{PhOH}), 7.80 (d, ⁴J = 2.5 Hz, 1H, H_{PhOH}), 7.58 (d, ³J = 8.0 Hz, 2H, H_{p-Tol}), 7.01 (d, ³J = 8.0 Hz, 2H, H_{p-Tol}), 5.45 (d, ³J = 7.5 Hz, 1H, NH), 3.27-3.20 (m, 1H, CH-N), 3.04-2.96 (m, 1H, CH-NH), 2.18 (s, 3H, CH₃), 2.40-2.30 (m, 1H, CH₂), 1.45 (s, 9H, *t*-Bu), 1.60-1.20 (m, 7H, CH₂). ¹³C NMR (CDCl₃, 75 MHz, δ ppm): 168.3 (CH=N), 165.0 (C-OH), 143.1, 139.6, 137.9, 137.8, 129.4, 126.7, 126.4, 124.7, 116.4 (C_{Ar}), 70.5 (CH-N), 57.3 (CH-NH), 35.5, 33.4, 33.2, 29.1, 24.5, 23.6, 21.3. IR(KBr): v = 3300-2800 (large, vO-H), 3298 (vN-H), 2958 (vC_{sp2}-H_{AR}), 1638 (vC=N), 1327, 1263, 1169, 1088 cm⁻¹. Elemental Anal. Calculated for C₂₄H₃₁N₃O₅S (473.20 g.mol⁻¹): C 60.87; H 6.60; N 8.87; S 6.77; found C 60.54; H 6.54; N 9.46; S 6.68.

Ligand 1f: Yield = 85%. ¹H NMR (CDCl₃, 300 MHz, δ ppm): 12.52 (s, 1H, O*H*), 8.19 (s, 1H, C*H*=N), 7.65 (d, ⁴*J* = 2.4 Hz, 1H, *H*_{PhOH}), 7.43 (d, ³*J* = 8.0 Hz, 2H, *H*_{*p*-Tol}), 7.31 (d, ⁴*J* = 2.4 Hz, 1H, *H*_{PhOH}), 7.29-7.10 (m, 15H, *H*_{Trityl}), 6.98 (d, ³*J* = 8.0 Hz, 2H, *H*_{*p*-Tol}), 4.49 (b, 1H, N*H*), 3.04-2.96 (m, 1H, C*H*-N), 2.75-2.70 (m, 1H, C*H*-NH), 2.24 (s, 3H, C*H*₃), 1.29 (s, 9H, *t*-Bu), 1.60-1.15 (m, 8H, C*H*₂). ¹³C NMR (CDCl₃, 75 MHz, δ ppm): 167.1 (*C*H=N), 156.8 (*C*-OH), 144.9 (3C_{Trityl}), 141.5, 136.2, 135.0, 130.8 (6C_{Trityl}), 128.9, 127.8 (6C_{Trityl}), 126.9, 126.8, 125.8 (3C_{Trityl}), 120.2 (*C*_{Ar}), 71.5 (*C*H-N), 63.1 (*C*-CPh₃), 57.5 (*C*H-NH), 34.2 (*C*-(Me)₃), 31.3 (3 *C*H₃), 28.8, 28.3, 24.6, 24.4. IR(KBr): v = 3300-2800 (large, vO-H), 3286 (vN-H), 2958 (vC_{sp2}-H_{AR}), 1629 (vC=N), 1362, 1270, 1158, 1066 cm⁻¹. Elemental Anal. Calculated for C₄₃H₄₆N₂O₃S (670.90 g.mol⁻¹): C 76.98; H 6.91; N 4.18; S 4.78; found C 77.29; H 6.98; N 3.52; S 3.50.

Ligand 1g: Yield = 88%. ¹H NMR (CDCl₃, 300 MHz, δ ppm): 12.86 (s, 1H, OH), 8.16 (s, 1H, CH=N), 8.01 (d, ³J = 7.8 Hz, 1H, H_{o-Nosyl}), 7.43 (t, ³J = 7.5 Hz, 1H, H_{o-Nosyl}), 7.35-7.20

(m, 3H, $H_{\text{o-Nosyl et PhOH}}$), 6.78 (s, 1H, H_{PhOH}), 5.21 (b, 1H, NH), 3.50-3.40 (m, 1H, CH-N), 3.02-2.90 (m, 1H, CH-N), 2.48-2.40 (m, 1H, CH₂), 1.39 (s, 9H, *t*-Bu), 1.26 (s, 9H, *t*-Bu), 1.65-1.05 (m, 7H, CH₂). ¹³C NMR (CDCl₃, 75 MHz, δ ppm): 166.3 (CH=N), 157.5 (C-OH), 147.7, 140.2, 136.1, 134.8, 133.0, 132.3, 129.7, 125.8, 124.5, 117.0 (C_{Ar}), 72.9 (CH-N), 58.8 (CH-NH), 35.0, 34.6, 34.0, 33.8, 31.5, 29.5, 24.8, 23.7. IR(KBr): v = 3300-2850 (large, vO-H), 3303 (vN-H), 2957 (vC_{sp2}-H_{AR}), 1626 (vC=N), 1535, 1339, 1268, 1160, 1069 cm⁻¹. Elemental Anal. Calculated for C₂₇H₃₇N₃O₅S (515.25 g.mol⁻¹): C 62.89; H 7.23; N 8.15; S 6.22; found C 62.20; H 7.16; N 8.69; S 5.90.

Ligand 1h: Yield = 80%. ¹H NMR (CDCl₃, 300 MHz, δ ppm): 12.75 (s, 1H, OH), 8.60 (t, ⁴J = 1.9 Hz, 1H, $H_{m-Nosyl}$), 8.51 (s, 1H, $H_{m-Nosyl}$), 8.20 (s, 1H, CH=N), 8.14-8.05 (m, 1H, H_{Nosyl}), 7.40 (d, ⁴J = 2.4 Hz, 1H, H_{PhOH}), 7.33 (t, ³J = 8.0 Hz, 1H, $H_{m-Nosyl}$), 6.95 (d, ⁴J = 2.4 Hz, 1H, H_{PhOH}), 5.01 (b, 1H, NH), 3.50-3.40 (m, 1H, CH-N), 3.02-2.92 (m, 1H, CH-N), 2.48-2.40 (m, 1H, CH₂), 1.39 (s, 9H, *t*-Bu), 1.26 (s, 9H, *t*-Bu), 1.60-1.03 (m, 7H, CH₂). ¹³C NMR (CDCl₃, 75 MHz, δ ppm): 166.3 (CH=N), 157.5 (C-OH), 147.6, 142.7, 140.4, 136.3, 131.9, 130.3, 127.8, 126.3, 121.7, 117.2 (C_{Ar}), 72.4(CH-N), 58.5 (CH-NH), 35.0, 34.0, 31.3, 30.1, 29.9, 29.4, 24.7, 23.8. IR(KBr): v = 3300-2800 (large, vO-H), 3286 (vN-H), 2949 (vC_{sp2}-H_{AR}), 1627 (vC=N), 1533, 1321, 1267, 1169, 1067 cm⁻¹. Elemental Anal. Calculated C₂₇H₃₇N₃O₅S (515.25 g.mol⁻¹): C 62.89; H 7.23; N 8.15; S 6.22; found C 62.70; H 7.18; N 8.49; S 6.03.

Ligand 1i: Yield = 93%. ¹H NMR (CDCl₃, 300 MHz, δ ppm): 12.9 (s, 1H, OH), 8.11 (s, 1H, CH=N), 8.03 (d, ³J = 8.9 Hz, 1H, $H_{p-Nosyl}$), 7.87 (d, ³J = 8.9 Hz, 1H, $H_{p-Nosyl}$), 7.38 (d, ⁴J = 2.3 Hz, 1H, H_{PhOH}), 6.85 (d, ⁴J = 2.3 Hz, 1H, H_{PhOH}), 4.92 (b, 1H, NH), 3.50-3.40 (m, 1H, CH-N), 2.92-2.70 (m, 1H, CH-NH), 2.48-2.40 (m, 1H, CH₂), 1.39 (s, 9H, *t*-Bu), 1.26 (s, 9H, *t*-Bu), 1.63-1.03 (m, 7H, CH₂). ¹³C NMR (CDCl₃, 75 MHz, δ ppm): 166.4 (CH=N), 157.4 (C-OH),

146.5, 140.5, 136.4, 127.8, 127.5, 125.9, 124.2, 117.2 (C_{Ar}), 72.4 (CH-N), 58.5 (CH-NH), 35.0, 34.2, 34.1, 34.0, 31.4, 30.9, 29.3, 24.7. IR(KBr): v = 3300-2800 (large, vO-H), 3292 (vN-H), 2958 (vC_{sp2}-H_{AR}), 1623 (vC=N), 1532, 1314, 1274, 1164, 1052 cm⁻¹.

Ligand 1j: Yield = 90%. ¹H NMR (CDCl₃, 300 MHz, δ ppm): 14.45 (s, 1H, OH), 8.57 (t, ⁴J = 1.9 Hz, 1H, $H_{m-Nosyl}$), 8.29 (s, 1H, CH=N), 8.16 (d, ⁴J = 2.7 Hz, 1H, H_{PhOH}), 8.02 (m, 2H, $H_{m-Nosyl}$), 7.90 (d, ⁴J = 2.7 Hz, 1H, H_{PhOH}), 7.45 (t, ³J = 8.0 Hz, 1H, $H_{m-Nosyl}$), 5.51 (b, 1H, NH), 3.50-3.40 (m, 1H, CH-N), 3.02-2.90 (m, 1H, CH-NH), 2.48-2.40 (m, 1H, CH₂), 1.41 (s, 9H, *t*-Bu), 1.60-1.05 (m, 7H, CH₂). ¹³C NMR (CDCl₃, 75 MHz, δ ppm): 167.5 (CH=N), 165.1 (C-OH), 147.8, 143.0, 139.5, 138.2, 132.0, 130.4, 126.6, 126.4, 125.1, 121.8, 116.5 (C_{Ar}), 71.1 (CH-N), 57.7 (CH-NH), 35.2, 33.8, 33.4, 28.9, 24.6, 23.6. IR(KBr): v = 3300-2800 (large, vO-H), 3287 (vN-H), 2969 (vC_{sp2}-H_{AR}), 2856 (vC_{sp3}-H_{AR}), 1632 (vC=N), 1327, 1282 , 1159, 1074 cm⁻¹. Elemental Anal. Calculated C₂₃H₂₈N₄O₇S (504,17 g.mol⁻¹): C 54.75; H 5.59; N 11.10; S 6.36; found C 54.64; H 5.52; N 11.90; S 6.13.

Complex 2a: To a stirring solution of (*R*,*R*)-**1a** (0.970 g, 2 mmol) in dry dichloromethane (20 mL) was added dropwise a solution of diethylaluminum chloride (1M, 25% in toluene, 0.482 g, 1 mmol) at room temperature under a nitrogen atmosphere. The resulting mixture was stirred for another 24 h. After removal of solvent, the yellow crude product was recrystallized from dry pentane (50 mL) to afford complex **2a** as a yellow solid. Yield = 86%. ¹H NMR (C₆D₆, 300 MHz, δ ppm) ∂ 8.16 (s, 1H, *CH*=N), 8.02 (d, ³*J* = 8.2 Hz, 2H, *H*_{*p*-Tol}), 7.52 (d, ⁴*J* = 2.5 Hz, 1H, H_{PhOH}), 6.68 (m, 1H, *H*_{PhOH}), 6.80 (d, ³*J* = 8.2 Hz, 2H, *H*_{*p*-Tol}), 4.61-4.52 (m, 1H, CH-N*H*SO₂), 3.80-3.62 (m, 1H, C*H*-N=C), 2.95-2.74 (m, 1H, CH₂ -C*H*-NHSO₂), 2.69-2.51 (m, 1H, CH₂-C*H*-N=C), 1.83 (s, 3H, C*H*₃-tosyl), 1.36 (s, 9H, *t*-Bu), 1.32 (s, 9H, *t*-Bu), 1.02-0.72 (m, 6H, C*H*₂-cvclohexvl). ¹³C NMR (C₆D₆, 75 MHz, δ ppm): 168.7 (CH=N), 159.4 (C-OAl),

141.6, 139.4, 139.2, 138.7, 137.6, 130.1, 129.3, 129.0,126.4, 125.4, 119.7 (C_{Ar}), 63.2 (*C*H-N=C), 57.3 (*C*H-NHSO₂), 36.3, 35.0, 33.8, 31.3, 29.5, 24.9, 21.1, 6.7. IR(KBr): v = 3312 (vN-H), 2980 (v(sp³-CH)), 1631 (vC=N) cm⁻¹.

Complex 3a: To a stirring solution of (*R*,*R*)-1a (0.485 g, 1 mmol) in dry dichloromethane (20 mL) was added dropwise a solution of diethylaluminum chloride (1M, 25% in toluene, 0.482 g, 1 mmol) at room temperature under a nitrogen atmosphere. The resulting mixture was stirred for another 2 h. After removal of solvent, the yellow crude product was recrystallized from dry pentane (50 mL) to afford **3a** as a yellow solid (1.43 g, 89.4 %). Yield = 89%. ¹H RMN (C₆D₆, 300 MHz, δ ppm): 8.08 (s, 1H, CH=N), 7.88 (s, 1H, CH=N), 7.83 (d, ³J = 8.0 Hz, 2H, H_{p-Tol}), 7.80 (d, ${}^{3}J = 8.0$ Hz, 2H, H_{p-Tol}), 7.77-7.72 (m, 2H, H_{ArO}), 7.12 (d, ${}^{4}J = 2.5$ Hz, 1H, H_{ArO}), 7.05 (d, ${}^{4}J = 2.5$ Hz, 1H, H_{ArO}), 6.75 (d, ${}^{3}J = 8.0$ Hz, 2H, H_{p-Tol}), 6.73 (d, ${}^{3}J = 8.0$ Hz, 2H, H_{p-Tol}), 4.90 (d, ${}^{3}J = 6.3$ Hz, 1H, NH), 4.85 (d, ${}^{3}J = 6.3$ Hz, 1H, NH), 3.80-3.68 (m, 1H, CH-N=C), 3.55-3.39 (m, 1H, CH-N=C), 3.22-3.11 (m, 1H, C^H-NHSO₂), 2.89-2.75 (m, 1H, CH-NHSO₂), 2.26-2.08 (m, 1H, CH₂), 2.03-1.97 (m, 1H, CH₂), 1.88 (s, 3H, CH₃), 1.84 (s, 3H, CH₃), 1.68 (s, 9H, t-Bu), 1.67 (s, 9H, t-Bu), 1.57 (t, 3H, ${}^{3}J = 6.3$ Hz, CH₂-CH₃), 1.28 (s, 9H, t-Bu), 1.26 (s, 9H, t-Bu), 1.02-0.70 (m, 14H, CH₂), 0.65 (m, 2H, CH₂-CH₃). ¹³C NMR (C₆D₆, 75 MHz, δ ppm) : 174.6 (CH=N), 173.6 (CH=N), 161.0 (C-OAl), 160.9 (C-OAl), 142.6, 142.4, 140.2, 139.9, 139.7, 139.0, 138.4, 137.6, 129.8, 129.5, 129.4, 129.0, 127.4, 126.7, 125.4, 125.2, 118.4, 118.2 (C_{Ar}), 70.3 (CH-N=C), 68.7 (CH-N=C), 57.5 (CH-NHSO₂), 56.2 (CH-NHSO₂), 35.3, 35.2, 34.9, 34.0, 33.9, 33.8, 32.5, 32.2, 31.3, 31.2, 29.5, 29.4, 24.7, 24.5, 23.8, 23.7, 21.2 (CH₃), 21.0 (CH₃), 8.7 (CH₃-CH₂-Al), 6.7 (CH₃-CH₂-Al). IR(KBr) : v = 3301 (v_{N-H}), 2979 ($v(sp^3-CH)$), 1626 ($v_{C=N}$) cm⁻¹. Elemental Analysis Calculated for C₃₀H₄₄AlClN₂O₃S (575.18 g.mol⁻¹): C 62.64; H 7.71; N 4.87; S 5.57; found C 62.52; H 7.64; N 4.89.

Complex 3j: To a stirring solution of (R,R)-**1j** (0.504 g, 1 mmol) in dry dichloromethane (20 mL) was added dropwise a solution of diethylaluminum chloride (1M, 25% in toluene, 0.482 g, 1 mmol) at room temperature under a nitrogen atmosphere. The resulting mixture was stirred for another 2 h. After removal of solvent, the orange crude product was recrystallized from dry pentane (50 mL) to afford complex **3j** as an orange solid. Yield = 82%. ¹H NMR (CD₂Cl₂, 300 MHz, δ ppm): 8.47 (t, ⁴*J* = 1.9 Hz, 1H, H_{m-Nosyl}), 8.35 (t, ⁴*J* = 1.9 Hz, 0.6 H, H_{m-Nosyl}), 8.19 (s, 0.6 H, CH=N), 8.16-7.90 (m, 7.4 H, H_{PhO and m-Nosyl}), 7.45-7.32 (m, 1.6 H, H_{m-Nosyl}), 4.63 (d, ³*J* = 7.5 Hz, 1H, NH), 4.38 (d, ³*J* = 7.5 Hz, 0.6 H, NH), 3.28-3.08 (m, 0.6 H, CH-N), 3.08-2.87 (m, 2.6 H, CH-N), 2.02-1.92 (m, 1.6 H, CH₂), 1.31 (s, 9H, *t*-Bu), 1.28 (s, 9H, *t*-Bu), 1.82-1.18 (m, 11.2 H, CH₂), 0.67 (t, 4.8 H, ³*J* = 6.3 Hz, CH₃-CH₂), 0.35 (m, 3.2 H, CH₂-CH₃). ¹³C NMR (CD₂Cl₂, 75 MHz, δ ppm): 174.7 (CH=N), 173.5(CH=N), 161.2 (C-OAI), 160.5 (C-OAI), 147.9, 147.2, 143.1, 143.0, 139.8, 137.4, 137.3, 133.0, 132.9, 129.7, 129.6, 126.4, 126.3, 125.4, 125.2, 121.9, 121.5, 117.4, 117.2 (C_{Ar}), 71.5 (CH-N), 70.2 (CH-N), 57.8 (CH-NH), 57.1 (CH-NH), 35.1, 35.0, 34.5, 34.2, 33.9, 33.7, 31.2, 31.0, 29.4, 29.1, 23.7, 23.2, 8.1 (CH₃-CH₂-AI), 0.7 (CH₃-CH₂-AI).

General procedure for 1a-j-Al catalyzed asymmetric cyanosilylation of aldehydes:

A mixture of 1(a-j) (0.02 mmol) and AlEt₂Cl (0.02 mmol) in dry dichloromethane (1 ml) was stirred 2 hours at room temperature. Then, benzaldehyde (0.1 ml, 1 mmol) was added and stirred for 0.5 h at room temperature under a nitrogen atmosphere. To the mixture was added *N*,*N*-dimethylaniline *N*-oxyde (0.015 mmol) and the resulting mixture was stirred for another 0.5 h at the same temperature. Then, the mixture was stirred at -20°C and trimethylsilylcyanide (0.2 ml, 1.5 mmol) was added with a syringe. After stirring for 12–18 h at this temperature, the mixture was concentrated and purified by column chromatography (200–300 mesh, gradient of petroleum ether/ethyl acetate) to yield the silylated cyanohydrin which was used for further chiral GC analysis.

General procedure for 3a-catalyzed asymmetric cyanosilylation of aldehydes:

A mixture of complex **3a** (11 mg, 0.02 mmol), benzaldehyde (0.1 ml, 1 mmol), and dry dichloromethane (1.5 mL) was stirred for 0.5 h at room temperature under a nitrogen atmosphere. To the mixture was added *N*-oxyde (0.015 mmol) and the resulting mixture was stirred for another 0.5 h at the same temperature. Then, the mixture was stirred at -20°C and trimethylsilylcyanide (0.2 ml, 1.5 mmol) was then added with a syringe. After stirring for 12–18 h at this temperature, the mixture was concentrated and purified by column chromatography (200–300 mesh, gradient of petroleum ether/ethyl acetate) to yield the silylated cyanohydrin which was used for further chiral GC analysis.

Entry ^[a]	[1a]:[AlEt ₂ Cl]	Conv. [%] ^[b]	ee [%] ^[b]	Config.
	ratio			
1	1:0	5	0	-
2	0:1	96	0	-
3	1:1	45	94	R
4	2:1	35	84	S

Table S1. Influence of the 1a-AlEt₂Cl ratio on the catalytic performances

^[a] All reactions were carried out with *N*-oxide (1.5 mol%) at -20 °C for 2 h, TMSCN (1,5 eq), [benzaldehyde] = 0.66M in CH₂Cl₂. ^[b] Determined by chiral GC analysis on Chrasil DEX CB.

Entry ^[a]	Catalyst (mol%)	Cocatalyst	Cocat. (mol%)	Conv. [%] ^[b]	ee [%] ^[b]	Config.
1	2	-	-	25	0	-
2	2	MeS(O)Ph	1	5	10	R
3	2	MeS(O)Ph	2	7	13	R
4	2	MeS(O)Ph	5	10	23	R
5	2	$Ph_2S(O)$	1	10	15	R
6	2	$Ph_2S(O)$	5	7	35	R
7	2	$Ph_2P(O)$	10	75	25	R
8	2	$Ph_2P(O)$	10	60	17	R
9	2	Ph ₃ P(O)	10	55	30	R
10	2	Ph ₃ P(O)	10	50	20	R
11	2	Ph ₃ P(O)	10	40	7	R
12	2	Ph ₃ P(O)	5	30	15	R
13	2	Ph ₃ P(O)	20	60	19	R
14	2	Dimethylaniline N-oxide	1	65	63	R
15	2	Dimethylaniline N-oxide	5	70	26	R
16	2	Methylmorpholine N-oxide	1	50	25	R
17	2	Methylmorpholine N-oxide	5	75	11	R

Table S2. Influence of the cocatalyst on the catalytic performances

^[a] All reactions were carried out with *N*-oxide (1₂₇5 mol-%) at -20_°C for 2 h, TMSCN (1,5 eq), [benzaldehyde] = $0_{27}66M$ in CH₂Cl₂. ^[b] Determined by chiral GC analysis on Chirasil DEX CB after 2 hours.

Entry ^[a]	[S] (mol %)	Conv. [%] ^[b]	ee [%] ^[b]	Config.
1	0.33	30	90	R
2	0.66	45	94	R
3	1	50	94	R

Table S3. Influence of the substrate concentration on the catalytic performances.

^[a] All reactions were carried out with 3 (2 mol%) and *N*-oxide (1.5 mol%) at -20 °C for

2 h, TMSCN (1,5 eq) in CH₂Cl₂. ^[b] Determined by chiral GC analysis on Chirasil DEX CB.

Entry ^[a]	TMSCN (eq)	Conv. [%] ^[b]	e.e. [%] ^[b]	Config.
1	1,2	42	82	R
2	1,5	45	94	R
3	1,8	50	93	R
4	2	52	87	R
5	2,5	55	85	R

Table S4. Influence of the amount of TMSCN on the catalytic performances.

^[a] All reactions were carried out with **3** (2 mol%) and *N*-oxide (1.5 mol%) at -20 °C for 2 h, [benzaldehyde] = 0,66 M in CH₂Cl₂. ^[b] Determined by chiral GC analysis on Chirasil DEX CB.

empirical formula	$C_{56}H_{78}AlClN_4O_6S_2 \cdot 4(C_6H_6)$
$fw/g \cdot mol^{-1}$	1342.28
temperature/K	100(2)
wavelength/Å	0.71073
crystal system	tetragonal
space group	P4 ₁ 2 ₁ 2
<i>a</i> [Å]	13.6143 (3)
<i>b</i> [Å]	13.6143 (3)
<i>c</i> [Å]	38.6616 (8)
α/deg	90
β /deg	90
γ/deg	90
volume/ Å ³	7165.9 (3)
Z	4
density (cacld) Mg·m ⁻³	1.244
absorp coeff/mm ⁻¹	0.18
<i>F</i> (000)	2880
crystal size/mm ³	$0.2\times0.14\times0.12$
θ range for data collection/deg	1.6 to 28.3
index ranges	$-18 \le h \le 13$
	$-18 \le k \le 17$
	$-51 \le l \le 51$
reflns collected	76565
indep reflns	5918 [R(int) = 0.075]
refinement method	Full-matrix least-squares on F
data /restraints/params	4383 / 22 / 431
goodness-of-fit on F^2	1.09
final <i>R</i> indices[$I > 2\sigma(I)$]	$R_1 = 0.0713$
	$wR_2 = 0.083$
<i>R</i> indices (all data)	$R_1 = 0.0751$
	$wR_2 = 0.085$
largest diff. peak and hole/ $e{\cdot} {\mathring{A}}^{-3}$	0.92 and -0.82

 $Table \ S5. \ Crystal \ data \ and \ structure \ refinement \ for \ complex \ 2$

Electronic Supplementary Material (ESI) for Catalysis Science & Technology This journal is C The Royal Society of Chemistry 2013