Electronic Supplementary Information

Design of Visible-Light Photocatalysts by Coupling of Narrow Bandgap Semiconductors and TiO₂: Effect of Their Relative Energy Band Positions in Photocatalytic Efficiency

Sher Bahadur Rawal,^a Sandipan Bera,^a Daeki Lee,^b Du-Jeon Jang^b and Wan In Lee^{*a}

^aDepartment of Chemistry, Inha University, Incheon 402-751, Republic of Korea E-mail: <u>wanin@inha.ac.kr</u>; Fax: +82-32-867-5604; Tel: +82-32-863-1026 ^bSchool of Chemistry, Seoul National University, Seoul 151-747, Republic of Korea

Fig. S1. Diffuse reflectance spectra of sensitizers belonging to Sen-A (a), Sen-B (b), and Sen-C (c), and determination of their bandgaps by plotting Kubelka-Munk function $[F(R).hv]^{1/2}$ versus photon energy (eV).

Fig. S2. Estimated band gaps of CdS and CdSe QDs belonging to Sen-A by Tauc plot, exhibiting direct band gaps (a) and indirect band gaps (b).

Fig. S3. Visible-light photocatalytic activities of several Type-A (a), Type-B (b), and Type-C (c) heterojunction structures. Gaseous 2-propanol was used as a model compound, and the amounts of CO_2 evolved were monitored as function of irradiation time.

Fig. S4. PL spectra of bare Ag₃PO₄ and Ag₃PO₄/TiO₂ heterocomposite.

It was found that Ag_3PO_4/TiO_2 showed much smaller PL intensity than Ag_3PO_4 , as shown in the Fig. S4. The obtained result clearly indicates that the charge recombination in the Ag_3PO_4 was reduced by coupling with TiO₂, thus supporting the hole transfer from Ag_3PO_4 VB to TiO₂.