Supplementary material

Co₃O₄/Al₂O₃

Figure S1: Fresh Co₃O₄/Al₂O₃ pellets, (b) Spent Co₃O₄/Al₂O₃ pellets (the bluish colour indicates the presence of cobalt aluminate in the spent catalyst)

Diffraction angle 20 (degrees)

Diffraction angle 20 (degrees)

Figure S2: X-ray diffraction patterns of the fresh Co_3O_4/Al_2O_3 (left) and spent Co_3O_4/Al_2O_3 (right)

Figure S3: Ammonia conversion as a function of temperature for Co_3O_4/Al_2O_3 Left: Co_3O_4/Al_2O_3 -powder ($d_p = 125-210 \ \mu m$); SV: 1.55 mmol NH₃/s/g)Right: Co_3O_4/Al_2O_3 -pellet ($d_{pellet} = 1 \ mm$; $h_{pellet} = 4 \ mm$); SV = 0.017 mmol NH₃/s/g

Figure S4: X-ray diffraction patterns of the fresh $Co_3O_4/ZnAl_2O_4$ (left) and spent $Co_3O_4/ZnAl_2O_4$ (right)

Figure S5: Ammonia conversion as a function of temperature for Co₃O₄/ZnAl₂O₄

Left: $Co_3O_4/ZnAl_2O_4$ -powder (d_p = 125-210 µm); SV: 1.46 mmol NH₃/s/g)

Right: $Co_3O_4/ZnAl_2O_4$ -pellet (d_{pellet} = 3 mm; h_{pellet} = 1 mm); SV = 0.017 mmol NH₃/s/g

Co₃O₄/SiO₂

		Co ₃ O ₄ /SiO ₂		
Support	d _{pellet} , mm S _{BET} , m²/g V _{pore} , cm³/g d _{pore} , nm	Silica 2.5 x 4.5 270 0.92 12		
Catalyst	Co-loading, wt% ^b Co ₃ O₄-loading, wt% ^c S _{BET} , m ² /g d _{pore} , nm d _{Co₃O₄, nm}	10.1 5.8 193 16 24.8 ^f	17.0 15.2 - 22.0 ^f	23.1 23.0 150 17 25.5 ^f 24.4 ± 4.5 ^e
Spent catalyst ^a	Co_3O_4 -loading, wt% ^c CoO-loading, wt% ^c Co-support, wt% ^c S _{BET} , m ² /g d _{Co3} O ₄ , nm d _{CoO} , nm d _{Co2SiO4} , nm	II 6.0 0 - 31 ^f -	 0 3.8 10.5 - 25.2 ^f 89 ^f	 11.5 0.2 5.0 - 26 ^f 12.7 ^f 111 ^f

Table S1: Characterization of the fresh and spent^a Co3O4/SiO₂ catalysts used

- ^a Spent catalyst after exposing a pellet of the catalyst to high temperature NH₃oxidation conditions (I: catalyst pellet recovered after exposing the catalyst to ammonia oxidation conditions at 800°C; II: catalyst pellet recovered after exposing the catalyst to ammonia oxidation conditions at 740°C followed by exposure to ammonia oxidation conditions at 580°C and 450°C).
- ^b Co-loading as determined by elemental analysis (AAS-ICP)
- ^c Amount of a phase present according to Rietveld refinement of the catalyst
- ^e Distribution of sizes of Co₃O₄ crystallites as estimated using SEM or TEM (TEM average based on counting ca. 100 crystallites)
- ^f Average crystallite size of Co₃O₄ crystallites using XRD

Electronic Supplementary Material (ESI) for Catalysis Science & Technology This journal is The Royal Society of Chemistry 2013

Figure S6: Ammonia conversion as a function of temperature for Co_3O_4/SiO_2 powder (d_p = 125-210 µm; 10.1 wt.-% Co); SV: 1.50 mmol NH₃/s/g)

Figure S7: XRD-patterns of the fresh and spent Co₃O₄/SiO₂ pellet containing 17.0 wt.-% cobalt (spent catalyst had been exposed to ammonia oxidation conditions at 800°C and a space velocity: 0.05 mmol NH₃/s/g)