P_2O_5/SiO_2 as an efficient heterogeneous catalyst for the synthesis of heterocyclic alkene derivatives under thermal solvent-free conditions

Zeba N. Siddiqui* and Tabassum Khan

Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, India.

Corresponding author. Email: <u>siddiqui_zeba@yahoo.co.in</u>

Table of contents

General Experimental Methods	.2-3
Experimental procedure for preparation of catalyst	3
Experimental procedure for synthesis of compounds 3a-n	3
¹ H and ¹³ C NMR spectra for all of the compounds	.3-7

Experimental

Reagents

All starting materials were purchased from Sigma-Aldrich, were of commercial grade and used without further purification. The purity of all compounds was checked by TLC on glass plates coated with silica gel (E-Merck G_{254}). P_2O_5 and SiO₂ were purchased from Merck.

Apparatus and instruments

Melting points were determined on a Riechert Thermover instrument and are uncorrected. The ¹H NMR and ¹³C NMR spectra were recorded on Bruker DRX-300 and Bruker Avance 400 Spectrometer. TMS was used as an internal standard and chemical shift values were in δ (ppm). The microanalytical data were collected on an Elementar vario EL III elemental analyzer. FT-IR spectra were obtained using a Perkin-Elmer spectrometer and done on KBr disc. The spectra were recorded in the 400-4000 cm⁻¹ wave-number range. Mass spectra were obtained on a Jeol-SX-120 (FAB) and Micromass Quattro II (ESI). X-ray diffractograms (XRD) of the catalyst were recorded in the 2 θ range of 10–70° (scan rate of 4° min⁻¹) on a Rigaku Miniflex X-ray diffractometer with Ni-filtered Cu Ka radiation at a wavelength of 1.54060[°]A. The SEM-EDX analysis was obtained using a JEOL JSM-6510 scanning electron microscope equipped with energy dispersive X-ray spectrometer (acc. voltage: 20 kV) at different magnification and transmission electron microscope (TEM) using JEM-2100 F model (acc. voltage: 200 kV) with magnification 100000x. up to Thermogravimetric/differential thermal analyses (TG/DTA) were obtained with a DTG-60H, with a heating rate of 25 °C min⁻¹ from 100 to 1000 °C under N₂ atmosphere, and the differential scanning calorimetry (DSC) data was obtained with DSC-60 (Simultaneous DTA-TG Apparatus), Shimadzu (TGA) instrument with a heating rate of 20 °C min⁻¹ from 0 to 500 °C under N₂ atmosphere. The X-ray single crystal diffraction of the compound 3a was

performed on a BRUKER AXS SMART APEX diffractometer with a CCD area detector (MoK α = 0.71073 Å, monochromator: graphite).

Synthesis of the P₂O₅/SiO₂ catalyst

 P_2O_5/SiO_2 was prepared by mixing P_2O_5 (1 mmol, 0.142 g) and 2 g of dried Silica Gel 60 (0.125–0.250 mm, previously heated at 120 °C for 24 h) in a mortar and grinding with a pestle to obtain a homogenous mixture as a white powder (2.142 g). This reagent is stable and can be kept at room temperature for months without losing its activity.¹

General procedure for the Knoevenagel reaction

A mixture of 5-chloro-3-methyl-1-phenylpyrazole-4-carboxaldehyde **1** (1.00 mmol), active methylene compounds **2a–k** (1.00 mmol), **2l-n** (2.00 mmol), and 0.05g of P_2O_5/SiO_2 (7% $w/w)^2$ were mixed thoroughly using a mortar and pestle. The reaction mixture was then transferred to an open Pyrex 100 mL beaker and heated at 80 °C for the given time (Table 8). After completion of the reaction (monitored by TLC), the reaction mixture was cooled to room temperature and added ethyl acetate (5 mL). The reaction mixture was filtered to remove the catalyst and concentrated to furnish pure products **3a-n** (Scheme 2).

2.5. Spectral data of compounds

2.5.1. 5-(5-Chloro-3-methyl-1-phenylpyrazol-4-yl)methylene-1,3-dimethyl-2, 4, 6pyrimidinetrione (3a)

Shining yellow crystals; m.p. 207–209 °C (lit. 208-210 °C); IR (KBr) cm⁻¹: 740, 1219, 1338, 1520, 1587, 1664, 1730, 2849, 3089. ¹H NMR (400 MHz, CDCl₃): $\delta = 2.43$ (s, 3H, CH₃), 3.42 (s, 3H, N–CH₃), 3.45 (s, 3H, N–CH₃), 7.32–7.84 (m, 5H, Ar–H), 8.48 (s, 1H, –CH=C). ¹³C NMR (100 MHz, CDCl₃): $\delta = 12.6, 27.7, 28.3, 115.9, 124.4, 126.7, 127.6, 136.9, 139.1, 144.9, 150.6, 151.7, 159.8, 165.2. FAB-MS: ($ *m/z*) 358. Anal. calc. for C₁₇H₁₅N₄O₃Cl: C, 56.93; H, 4.18; N, 15.61. Found: C, 56.99; H, 4.16; N, 15.56.

2.5.2. 5-(5-Chloro-3-methyl-1-phenylpyrazol-4-yl)methylene-2,4,6- pyrimidinetrione(3b)

Bright yellow crystals; m.p. >300 °C (lit. >300°C); IR (KBr) cm⁻¹: 734, 1207, 1381, 1528, 1572, 1679, 1724, 3067, 3095, 3195. ¹H NMR (300 MHz, DMSO-d₆): $\delta = 2.29$ (s, 3H, CH₃), 7.31–7.82 (m, 5H, Ar–H), 8.12 (s, 1H, –CH=C), 11.05 (s, 1H, NH), 11.36 (s, 1H, NH). ¹³C NMR (100 MHz, DMSO-d₆): $\delta = 12.4$, 115.7, 123.3, 127.7, 128.7, 136.9, 138.7, 143.2, 150.0, 151.4, 162.2, 165.6. ESI-MS: (*m*/*z*) 330.20. Anal. calc. for C₁₅H₁₁N₄O₃Cl: C, 54.49; H, 3.32; N, 16.94. Found: C, 54.56; H, 3.36; N, 16.87.

2.5.3. 5-(5-Chloro-3-methyl-1-phenylpyrazol-4-yl)methylene-2-mercapto-4,6-

pyrimidinedione (3c)

Pale yellow solid; m.p. >300 °C(lit. >300 °C); IR (KBr) cm⁻¹: 729, 1007, 1347, 1501, 1618, 1674, 3047, 3089, 3124. ¹H NMR (300 MHz, DMSO-d₆): $\delta = 2.32$ (s, 3H, CH₃), 7.34–7.84 (m, 5H, Ar–H), 8.22 (s, 1H, –CH=C), 11.12 (s, 1H, NH), 11.43(s, 1H, NH). ¹³C NMR (100 MHz, DMSO-d₆): $\delta = 12.6$, 115.3, 122.3, 127.7, 128.9,136.2, 138.4, 141.2, 150.0, 151.8, 163.6, 172.1. ESI-MS: (*m/z*) 346.15. Anal. calc. for C₁₅H₁₁N₄O₂SCl: C, 51.97; H, 3.17; N, 16.15. Found: C, 51.99; H, 3.13; N, 16.07.

2.5.4. 2-(5-Chloro-3-methyl-1-phenylpyrazol-4-yl)methylene-1,3-indanedione (3d)

Pale greenish crystals; m.p. 198–202 °C (lit. 199-202 °C); IR (KBr) cm⁻¹: 732, 1213, 1343, 1521, 1623, 1689, 3065. ¹H NMR (400 MHz, CDCl₃): $\delta = 2.40$ (s, 3H, CH₃), 7.45–8.04 (m, 9H, Ar–H), 7.80 (s, 1H, –CH=C). ¹³C NMR (100 MHz, CDCl₃): $\delta = 13.0$, 122.9, 123.3, 128.0, 128.2, 131.6, 135.0, 135.3, 137.2, 138.9, 141.9, 152.1, 188.5, 189.4. FAB-MS: (*m/z*) 349. Anal. calc. for C₂₀H₁₃N₂O₂Cl: C, 68.89; H, 3.72; N, 8.03. Found: C, 68.96; H, 3.77; N, 8.08.

2.5.5. 2-(5-Chloro-3-methyl-1-phenylpyrazol-4-yl)methylene-1, 4-benzothiazine-3-one(3e)

Greenish yellow solid; m.p. 115–116 °C (lit. 114-116 °C); IR (KBr) cm⁻¹: 727, 1209, 1351, 1517, 1597, 1653, 3053, 3185. ¹H NMR (400 MHz, CDCl₃): $\delta = 2.33$ (s, 3H, CH₃) 7.12–8.02 (m, 10H, Ar–H + CH=C), 9.61 (br s, 1H, NH). ¹³C NMR (100 MHz, CDCl₃): $\delta = 13.84$, 115.21, 126.18, 129.19, 129.38, 134.43, 136.96, 151.74, 191.38. FAB-MS: (*m/z*) 368. Anal. calc. for C₁₉H₁₄N₃OSCI: C, 62.06; H, 3.80; N, 11.42. Found: C, 62.08; H, 3.83; N, 11.39.

2.5.6. 5-(5-Chloro-3-methyl-1-phenylpyrazol-4-yl)methylene-2,2-dimethyl-1, 3-dioxane-4, 6-dione (3f)

Pale yellow crystals; m.p: 241–243 °C (lit. 240-242 °C); IR (KBr) cm⁻¹: 729, 1217, 1347, 1525, 1582, 1725. ¹H NMR (300 MHz, CDCl₃): $\delta = 1.59$ (s, 6H, 2 CH3), 2.52 (s, 3H, CH₃), 7.00–7.73 (m, 6H, Ar–H + CH=C). ¹³C NMR (100 MHz, CDCl₃): $\delta = 13.84$, 27.94, 117.01, 125.11, 128.49, 129.18, 133.03, 136.916, 153.14, 191.84. FAB-MS: (*m/z*) 347. Anal. calc. for C₁₇H₁₅N₂O₄Cl: C, 58.90; H, 4.32; N, 8.07. Found: C, 58.94; H, 4.35; N, 8.03.

2.5.7. 4-(5-Chloro-3-methyl-1-phenylpyrazol-4-yl)methylene-3-methyl-1-

phenylpyrazol-5-one (3g)

White powder; m.p. 186–189 °C (lit. 186-188 °C); IR (KBr) cm⁻¹: 736, 1219, 1353, 1529, 1602, 1730, 3056. ¹H NMR (400 MHz, CDCl₃): $\delta = 2.4$ (s, 6H, 2CH₃), 4.93 (s, 1H, – CH=C), 7.23–7.76 (m, 10H, Ar–H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 13.84$, 30.92, 119.04, 127.08, 128.69, 129.11, 133.23, 136.76, 154.71, 176.23. FAB-MS: (*m/z*) 376. Anal. calc. For C₂₁H₁₇N₄OCI: C, 66.96; H, 4.51; N, 14.86. Found: C, 66.92; H, 4.49; N, 14.83.

2.5.8. 3-(5-Chloro-3-methyl-1-phenylpyrazol-4-yl)-2-phenyl-acrylic acid (3h)

White crystalline solid; m.p. 160-163 °C; IR (KBr) cm⁻¹: 762, 1211, 1373, 1528, 1599, 1679, 2867, 3063. ¹H NMR (400 MHz, CDCl₃): $\delta = 2.54$ (s, 3H, CH₃), 7.43–7.59 (m, 10H,

Ar–H), 9.97 (s, 1H, –CH=C). ¹³C NMR (100 MHz, CDCl₃): δ = 13.84, 117.41, 125.18, 129.19, 129.28, 133.43, 136.96, 151.74, 183.84. ESI-MS: (*m/z*) 339.6. Anal. calc. for C₁₉H₁₅N₂O₂Cl: C, 67.31; H, 4.42; N, 8.26. Found: C, 67.29; H, 4.39; N, 8.24.

2.5.9. Ethyl-3-(5-Chloro-3-methyl-1-phenylpyrazol-4-yl)-2-cyanoacrylate (3i)

White crystals; m.p: 75–79 °C (lit. 75-78 °C); IR (KBr) cm⁻¹: 729, 1217, 1347, 1525, 1582, 1720, 2220. ¹H NMR (300 MHz, CDCl₃): $\delta = 1.50$ (t, 3H, CH3), 2.35 (s, 3H, CH₃), 4.29 (q, 2H, CH₂), 7.40 (m, 5H, Ar–H), 8.10 (s, 1H, =CH). ¹³C NMR (100 MHz, CDCl₃): $\delta = 13.84$, 14.10, 61.84, 114.60, 118.44, 127.98, 129.19, 129.58, 132.30, 136.61, 153.64, 166.29. FAB-MS: (*m/z*) 316. Anal. calc. for C₁₆H₁₄N₃O₂Cl: C, 60.86; H, 4.47; N, 13.31. Found: C, 61.01; H, 4.53; N, 13.00.

2.5.10. 2-(5-Chloro-3-methyl-1-phenylpyrazol-4-yl)methylene-malononitrile (3j)

Yellow crystals; m.p: 195–199 °C (lit. 195-197 °C); IR (KBr) cm⁻¹: 729, 1217, 1347, 1525, 1582, 2215. ¹H NMR (300 MHz, CDCl₃): $\delta = 2.25$ (s, 3H, CH₃), 7.78 (m, 6H, Ar–H + CH=C). ¹³C NMR (100 MHz, CDCl₃): $\delta = 13.84$, 114.53, 117.36, 125.12, 129.76, 129.99, 133.13, 136.00, 151.21. FAB-MS: (*m/z*) 368.71. Anal. calc. for C₁₄H₉N₄Cl: C, 62.57; H, 3.38; N, 20.85. Found: C, 62.21; H, 3.40; N, 20.96.

2.5.11. 3-(5-Chloro-3-methyl-1-phenylpyrazol-4-yl))-2-phenylacrylonitrile (3k)

Yellow crystals; m.p: 76–79 °C (lit. 76-78 °C); IR (KBr) cm⁻¹: 729, 1217, 1347, 1525, 1582, 2222. ¹H NMR (300 MHz, CDCl₃): $\delta = 2.42$ (s, 3H, CH₃), 7.45 (m, 11H, Ar–H + CH=C). ¹³C NMR (100 MHz, CDCl₃): $\delta = 13.84$, 114.98, 119.41, 125.87, 127.19, 128.28, 134.43, 135.36, 153.14. FAB-MS: (*m/z*) 319.87. Anal. calc. for C₁₄H₉N₄Cl: C, 71.34; H, 4.41; N, 13.14. Found: C, 70.98; H, 4.21; N, 12.85.

2.5.12. 4-(4-hydroxy-6-methyl-2-oxo-2H-pyran-2-one-3-yl)-3, 7-dimethyl-1-

phenylpyrazolo [3,4:2,3]-4H-pyrano [3,2-b] pyran-5-one (3l)

White crystalline solid; m.p. 259-261 °C (lit. 260-262 °C); IR (KBr) cm⁻¹: 723, 1207, 1355, 1517, 1642, 1726, 3059, 3442. ¹H NMR (400 MHz, CDCl₃): $\delta = 2.05$ (s, 6H, 2CH₃), 2.29 (s, 3H, CH₃), 4.53 (S, 1H, CH), 6.01 (s, 2H, H-5), 7.068-7.62 (m, 5H, Ar-H), 10.49 (s, 1H, OH). ¹³C NMR (100 MHz, CDCl₃): $\delta = 22.15$, 103.45, 121.23, 128.17, 134.11, 136.21, 166.51, 182.10. FAB-MS: (*m/z*) 418. Anal. calc. for C₂₃H₁₈N₂O₆: C, 66.02; H, 4.30; N, 6.69. Found: C, 66.23; H, 4.55; N, 6.40.

2.5.13. 4-(4-hydroxy-6,7-dimethyl-2-oxo-2H-1-benzopyran-2-one-3-yl)-3-methyl-1-

phenylpyrazolo [3,4:2,3]-4H-pyrano [3,2-b]-7,8-dimethyl-1-benzopyran-5-one (3m)

Orange powder; m.p: >300 °C; IR (KBr) cm⁻¹: 758, 1203, 1377, 1572, 1619, 1726, 3052, 3377. ¹H NMR (400 MHz, DMSO-d₆): $\delta = 2.34$, 2.39, 2.43 (s, 15H, CH₃), 7.07 (s, 1H, CH), 7.34-8.35 (m, 9H, Ar-H), 8.20. ¹³C NMR (100 MHz, DMSO-d₆): $\delta = 20.13$, 103.85, 120.47, 128.57, 133.11, 136.57, 166.52, 183.17. ESI- MS: (*m/z*) 547.6. Anal. calc. for C₃₃H₂₆N₂O₆: C, 72.59; H, 4.76; N, 5.12. Found: C, 72.56; H, 4.73; N, 5.10.

2.5.14. 4-(4-hydroxy-2-oxo-2H-1-benzopyran-2-one-3-yl)-3-methyl-1-phenylpyrazolo

[3,4:2,3]-4H-pyrano [3,2-b]-1-benzopyran-5-one (3n)

White crystalline solid; m.p: 269-271 °C (lit. 270 °C); IR (KBr) cm⁻¹: 735, 1213, 1356, 1518, 1659, 1729, 3062, 3451. ¹H NMR (400 MHz, DMSO-d₆): $\delta = 2.62$ (s, 3H, CH₃), 4.75 (s, 1H, CH), 7.25-7.79 (m, 11H, Ar-H), 8.20 (d, 2H). ¹³C NMR (100 MHz, DMSO-d₆): $\delta = 23.13$, 102.15, 122.34, 128.65, 133.09, 136.34, 165.35, 181.07. FAB-MS: (*m/z*) 491. Anal. calc. for C₂₉H₁₈N₂O₆: C, 71.02; H, 3.67; N, 5.71. Found: C, 71.35; H, 3.95; N, 5.40.

References

- 1 Eshghi H, Rafei M, Karimi M H (2001) Synth Commun 31:771.
- 2 Shaterian H R, Ranjbar M, Azizi K (2011) Chin J Chem 29:1635.

