Chemoenzymatic synthesis of optically active 2-(2- or 4-substituted-1*H*-imidazol-1-yl)cycloalcanols. Chiral additives for (L)-proline.

Raúl Porcar,^a Nicolás Ríos-Lombardía,^b Eduardo Busto,^b Vicente Gotor-Fernández,^b Vicente Gotor ^{b*}, Eduardo García-Verdugo,^a M. Isabel Burguete,^a Santiago V. Luis^{a*}

^a Departamento de Química Inorgánica y Orgánica, Universitat Jaume I, Av. Vicent Sos Baynat s/n 12071 Castellón, Spain. Fax: +34964728214

luiss@uji.es

^b Departamento de Química Orgánica e Inorgánica, Universidad de Oviedo, 33006 Oviedo, Spain. Fax: +34 985 103448.

vgs@uniovi.es

Supporting information

Table of Contents

Figure S.I.1. 1H-NMR spectra (DMSO) of a) (L)-proline, b) equimolecular mixture (L)-prolin	e: 4d ,
c) 4d	S3
Figure S.I.2. FT-IR-ATR. Green: (L)-proline; Blue: equimolecular mixture (L)-proline:4d;	Red:
4d	S4
Figure S.I.3. DSC of different mixtures (S,S)-4a: (L)-proline	S5
Figure S.I.4. (L)-proline melting temperature for a mixture of DSC of different mixtures (S,S	S)-4a:
(L)-proline	. S5
Table S.I.1. Melting temperatures of different complex (S,S)-4a: (L)-proline	S6
Table S.I.2 Melting temperatures of different complexes formed by diverse imidazoles and	d (L)-
proline with ratio 1:1	S6
. Spectroscopical data of (1S,2S)-2-(1H-imidazol-1-yl)cyclopentanol (3a)	S 7
Spectroscopical data of (1S,2S)-2-(4-methyl-1H-imidazol-1-yl)cyclopentanol (3b)	S 7
Spectroscopical data of (1S,2S)-2-(4-phenyl-1H-imidazol-1-yl)cyclopentanol (3c)	S 8
Spectroscopical data of (1S,2S)-2-(2-methyl-1H-imidazol-1-yl)cyclopentanol (3d)	S 8
Spectroscopical data of (1S,2S)-2-(2-phenyl-1H-imidazol-1-yl)cyclopentanol (3e)	S9
Spectroscopical data of (1S,2S)-2-(1H-imidazol-1-yl)cyclohexanol (4a)	S9
Spectroscopical data of (1S,2S)-2-(4-methyl-1H-imidazol-1-yl)cyclohexanol (4b)	S10
Spectroscopical data of (1S,2S)-2-(4-phenyl-1H-imidazol-1-yl)cyclohexanol (4c)	S10
Spectroscopical data of (1S,2S)-2-(2-methyl-1H-imidazol-1-yl)cyclohexanol (4d)	S11
Spectroscopical data of (1S,2S)-2-(2-phenyl-1H-imidazol-1-yl)cyclohexanol (4e)	S11
Spectroscopical data of (1R,2R)-2-(1H-imidazol-1-yl)cyclopentyl acetate (5a)	S12
Spectroscopical data of (1R,2R)-2-(4-methyl-1H-imidazol-1-yl)cyclopentyl acetate (5b)	S12
Spectroscopical data of (1R,2R)-2-(4-phenyl-1H-imidazol-1-yl)cyclopentyl acetate (5c)	S13
Spectroscopical data of (1R,2R)-2-(2-methyl-1H-imidazol-1-yl)cyclopentyl acetate (5d)	S13
Spectroscopical data of (1R,2R)-2-(2-phenyl-1H-imidazol-1-yl)cyclopentyl acetate (5e)	S14
Spectroscopical data of (1R,2R)-2-(1H-imidazol-1-yl)cyclohexyl acetate (6a)	S14
Spectroscopical data of (1R,2R)-2-(4-methyl-1H-imidazol-1-yl)cyclohexyl acetate (6b)	S15
Spectroscopical data of (1R,2R)-2-(4-phenyl-1H-imidazol-1-yl)cyclohexyl acetate (6c)	S15
Spectroscopical data of (1R,2R)-2-(2-methyl-1H-imidazol-1-yl)cyclohexyl acetate (6d)	S16
Spectroscopical data of (1R,2R)-2-(2-phenyl-1H-imidazol-1-yl)cyclohexyl acetate (6e)	S16

Figure S.I.1. ¹H-NMR spectra (DMSO) of a) (L)-proline, b) equimolecular mixture (L)-proline:**4d**, c) **4d**.

Figure S.I.2. FT-IR-ATR. Green: (L)-proline; Blue: equimolecular mixture (L)-proline:4d; Red: 4d.

Figure S.I.3. DSC of different mixtures (S,S)-4a: (L)-proline.

Figure S.I.4. (L)-proline melting temperature for a mixture of DSC of different mixtures (S,S)-4a: (L)-proline.

	S,S-Cy6-OH-Im:L-proline						
Entry	Ratio	Imidazole Molar fraction	T _m (ºC) imidazole ^a	T _m (⁰C) L-proline ^ª			
1	1:0	1	88.28	-			
2	0:1	0	-	222.13			
3	1:1	0.5	67.76	168.51			
4	1:2.5	0.3	87.91	175.91			
5	1:5	0.17	91.56	192.46			
6	2.5:1	0.71	71.44	177.74			
7	5:1	0.83	75.02	155.63			

Table S.I.1. Melting temperatures of different complex (*S*,*S*)-**4a**: (L)-proline.

 $^{\rm a}$ The melting temperature (T_m) was determined as the onset of the transition.

Table S.I.2 Melting temperatures of different complexes formed by diverse imidazoles and (L)-proline with ratio 1:1.

Entry	-OX	R ₁	R ₂	Imidazole	Imidazole: (L)-	proline (1:1)
				T_m (ºC) ^a	T _m (°C) imidazole ^a	T _m (°C) (L)- proline ^a
1	R,R-OAc	Н	Н	-56	< -50	142
2	S,S-OH	Н	Н	88	86	166
3	R,R-OAc	CH ₃	Н	-48	-47	150
4	S,S-OH	CH ₃	Н	64	81	180
5	S,S-OH	Н	Ph	173	179	195

^a The melting temperature (T_m) was determined as the onset of the transition.

(1*S*,2*S*)-2-(1*H*-imidazol-1-yl)cylopentanol (3a). *R*_f (10% MeOH/CHCl₃): 0.22; Mp: 72-74 °C; IR (KBr): v 3192, 3096, 2974, 2348, 1604, 1574, 1412, 1353, 1287, 1231, 1149, 1113, 1097, 1060 cm⁻¹; ¹H NMR (CDCl₃, 300.13 MHz): δ 1.62-1.89 (m, 4H), 2.01-2.13 (m, 1H), 2.15-2.29 (m, 1H), 4.08-4.18 (m, 2H), 6.32 (brs, 1H), 6.83 (s, 1H), 6.89 (s, 1H), 7.26 (s, 1H); ¹³C NMR (CDCl₃, 75.5 MHz): δ 20.3 (CH₂), 30.3 (CH₂), 32.2 (CH₂), 65.9 (CH), 77.9 (CH), 117.4 (CH), 128.7 (CH), 136.3 (CH); MS (ESI⁺, *m*/*z*): 175 [(M+Na)⁺, 100%], 153 [(M+H)⁺, 35%]; (*S*,*S*)-**3a**: [α]²⁰_D: +41.9 (*c* 1, CHCl₃), 99% *ee*; Analytical separation (HPLC): Chiralcel OB-H *n*-hexane/EtOH (97:3), 0.5 mL/min, 20 °C, t_R (*R*,*R*)= 39.6 min, t_R (*S*,*S*)= 45.9 min.

Spectroscopical data of (1S,2S)-2-(4-methyl-1H-imidazol-1-yl)cyclopentanol (3b)

(1*S*,2*S*)-2-(4-methyl-1*H*-imidazol-1-yl)cyclopentanol (3b). *R*_f (10% MeOH/CHCl₃): 0.16; Mp: 95-97 °C; IR (KBr): v 3112, 2964, 2859, 2763, 2362, 1602, 1561, 1497, 1356, 1322, 1227, 1171, 1114, 1070 cm⁻¹; ¹H NMR (CDCl₃, 300.13 MHz): δ 1.65-1.90 (m, 5H), 2.05 (s, 3H), 2.21-2.33 (m, 1H), 4.01-4.10 (m, 1H), 4.17 (q, ³*J*_{HH} = 7.5 Hz, 1H), 4.70 (brs, 1H), 6.61 (s, 1H), 7.18 (s, 1H); ¹³C NMR (CDCl₃, 75.5 MHz): δ 13.2 (CH₃), 19.8 (CH₂), 29.8 (CH₂), 31.5 (CH₂), 65.6 (CH), 77.5 (CH), 122.9 (CH), 128.0 (C), 135.1 (CH); MS (ESI⁺, *m/z*): 189 [(M+Na)⁺, 20%], 167 [(M+H)⁺, 100%]; (*S*,*S*)-**3b**: $[\alpha]^{20}_{D}$: +50.2 (*c* 1, CHCl₃), 99% *ee*; Analytical separation (HPLC) Chiralpak AS *n*-hexane/EtOH (96:4), 0.8 mL/min, 40 °C, t_R (*S*,*S*)= 17.4 min, t_R (*R*,*R*)= 20.8 min.

Spectroscopical data of (1*S*,2*S*)-2-(4-phenyl-1*H*-imidazol-1-yl)cyclopentanol (3c)

(1*S*,2*S*)-2-(4-phenyl-1*H*-imidazol-1-yl)cyclopentanol (3c). *R*_f (10% MeOH/CHCl₃): 0.23; Mp: 168-170 °C; IR (KBr): v 3129, 2964, 2868, 2345, 2344, 1602, 1566, 1484, 1449, 1366, 1310, 1202, 1067 cm⁻¹; ¹H NMR (CDCl₃, 300.13 MHz): δ 1.66-1.88 (m, 4H), 2.07-2.23 (m, 2H), 4.04-4.18 (m, 2H), 4.50 (brs, 1H), 6.99 (s, 1H), 7.31-7.42 (m, 4H), 7.56 (d, ³*J*_{HH}= 7.8 Hz, 2H); ¹³C NMR (CDCl₃, 75.5 MHz): δ 19.4 (CH₂), 29.7 (CH₂), 31.2 (CH₂), 65.8 (CH), 77.4 (CH), 112.5 (CH), 124.5 (2CH), 126.7 (CH), 128.4 (2CH), 133.4 (C), 136.2 (CH), 141.3 (C); MS (ESI⁺, *m/z*): 251 [(M+Na)⁺, 20%], 229 [(M+H)⁺, 100%]; (*S*,*S*)-**3c**: $[\alpha]^{20}_{D}$: +71.5 (*c* 1, CHCl₃), >99% *ee*; Analytical separation (HPLC): Chiralpak AS *n*-hexane/EtOH (96:4), 0.8 mL/min, 40 °C, t_{*R*} (*R*,*R*)= 19.9 min, t_{*R*} (*S*,*S*)= 24.6 min.

Spectroscopical data of (1S,2S)-2-(2-methyl-1H-imidazol-1-yl)cyclopentanol (3d)

(1*S*,2*S*)-2-(2-methyl-1*H*-imidazol-1-yl)cyclopentanol (3d). *R*_f (10% MeOH/CHCl₃): 0.21; Mp: 72-74 °C; IR (KBr): v 3111, 2963, 2876, 2360, 2359, 1666, 1529, 1449, 1423, 1349, 1282, 1153, 1133, 1087, 1057, 990, 934, 907, 852, 729 cm⁻¹; ¹H NMR (CDCl₃, 300.13 MHz): δ 1.63-1.90 (m, 4H), 1.98-2.18 (m, 2H), 2.20 (s, 3H), 4.09-4.19 (m, 2H), 6.63 (s, 1H), 6.73 (s, 1H); ¹³C NMR (CDCl₃, 75.5 MHz): δ 13.1 (CH₃), 20.1 (CH₂), 29.9 (CH₂), 31.8 (CH₂), 63.9 (CH), 77.8 (CH), 114.9 (CH), 126.6 (CH), 145.1 (C); MS (ESI⁺, *m*/*z*): 189 [(M+Na)⁺, 20%], 167 [(M+H)⁺, 100%]; (S,S)-3d: [α]²⁰_D: +14.7 (*c* 1, CHCl₃), >99% *ee*; Analytical separation (HPLC) Chiralcel OD *n*-hexane/EtOH (90:10), 0.8 mL/min, 20 °C, t_R (*S*,*S*)= 13.0 min, t_R (*R*,*R*)= 17.2 min.

Spectroscopical data of (1*S*,2*S*)-2-(2-phenyl-1*H*-imidazol-1-yl)cyclopentanol (3e)

(1*S*,2*S*)-2-(2-phenyl-1*H*-imidazol-1-yl)cyclopentanol (3e). *R*_f (5% MeOH/CHCl₃): 0.17; Mp: 162-164 °C; IR (KBr): v 3404, 3144, 3109, 3061, 2957, 2873, 2771, 2360, 2341, 1602, 1468, 1444, 1422, 1352, 1331, 1300, 1280, 1202, 1157, 1131, 1105, 1069, 1022, 932, 775, 753, 719 cm⁻¹; ¹H NMR (CDCl₃, 300.13 MHz): δ 1.57-1.80 (m, 4H), 1.99-2.12 (m, 2H), 4.24 (q, ³*J*_{HH} = 7.6 Hz, 1H, H₂), 4.43 (q, ³*J*_{HH} = 7.6 Hz, 1H), 6.88 (s, 2H), 7.31-7.34 (m, 3H), 7.54-7.56 (m, 2H); ¹³C NMR (CDCl₃, 75.5 MHz): δ 19.8 (CH₂), 31.2 (CH₂), 31.9 (CH₂), 63.4 (CH), 78.2 (CH), 116.0 (CH), 128.2 (2CH), 128.5 (CH), 128.5 (CH), 129.5 (2CH), 130.1 (C), 148.4 (C); MS (ESI⁺, *m/z*): 251 [(M+Na)⁺, 32%], 229 [(M+H)⁺, 100%]; (*S*,*S*)-**3e**: $[\alpha]^{20}_{\text{D}}$: -45.0 (*c* 1, CHCl₃), >99% *ee*; Analytical separation (HPLC): Chiralcel OD *n*-hexane/EtOH (90:10), 0.8 mL/min, 20 °C, t_R (*S*,*S*)= 16.6 min, t_R (*R*,*R*)= 20.6 min.

Spectroscopical data of (1S,2S)-2-(1H-imidazol-1-yl)cyclohexanol (4a)

(1*S*,2*S*)-2-(1*H*-imidazol-1-yl)cyclohexanol (4a). *R*_f (10% MeOH/CHCl₃): 0.34; Mp: 132-133 °C; IR (KBr): v 3725, 2975, 1492, 1230, 1054, 1031 cm⁻¹; ¹H NMR (CDCl₃, 300.13 MHz): δ 1.32-1.47 (m, 3H), 1.59-1.88 (m, 3H), 2.01-2.16 (m, 2H), 3.53-3.69 (m, 2H), 4.77 (s, 1H), 6.82 (s, 1H), 6.89 (s, 1H), 7.31 (s, 1H); ¹³C NMR (CDCl₃, 75.5 MHz): δ 24.3 (CH₂), 25.0 (CH₂), 32.1 (CH₂), 34.2 (CH₂), 63.8 (CH), 72.8 (CH), 117.0 (CH), 128.0 (CH), 136.0 (CH); MS (ESI⁺, *m/z*): 167 [(M+H)⁺, 100%]; (*S*,*S*)-4a: [α]²⁰_D: +12.1 (*c* 1, CHCl₃), >99% *ee*; Analytical separation (HPLC) Chiralpak AS *n*-hexane/2-propanol (90:10), 0.8 mL/min, 20 °C, t_R (*S*,*S*)= 21.9 min, t_R (*R*,*R*)= 30.3 min. Spectroscopical data of (1*S*,2*S*)-2-(4-methyl-1*H*-imidazol-1-yl)cyclohexanol (4b)

(1*S*,2*S*)-2-(4-methyl-1*H*-imidazol-1-yl)cyclohexanol (4b). *R*_f (10% MeOH/CHCl₃): 0.36; Mp: 89-91 °C; IR (KBr): v 3456, 2984, 1503, 1225, 1125, 1039 cm⁻¹; ¹H NMR (CDCl₃, 300.13 MHz): δ 1.32-1.42 (m, 3H), 1.59-1.84 (m, 3H), 1.99-2.17 (m, 2H), 2.04 (s, 3H), 3.53-3.69 (m, 2H), 5.00 (s, 1H), 6.60 (s, 1H), 7.27 (s, 1H); ¹³C NMR (CDCl₃, 75.5 MHz): δ 13.2 (CH₃), 24.3 (CH₂), 25.1 (CH₂), 32.0 (CH₂), 33.9 (CH₂), 64.0 (CH), 72.8 (CH), 113.3 (CH), 135.0 (CH), 136.8 (C); MS (ESI⁺, *m/z*): 181 [(M+H)⁺, 100%]; (*S*,*S*)-4b: $[\alpha]^{20}_{D}$: +20.5 (*c* 1, CHCl₃), 95% ee; Analytical separation (HPLC): Chiralcel OD *n*-hexane/2-propanol (90:10), 0.8 mL/min, 20 °C, t_R (*S*,*S*)= 19.1 min, t_R (*R*,*R*)= 24.2 min.

Spectroscopical data of (1S,2S)-2-(4-phenyl-1H-imidazol-1-yl)cyclohexanol (4c)

(1*S*,2*S*)-2-(4-phenyl-1*H*-imidazol-1-yl)cyclohexanol (4c). *R*_f (10% MeOH/CHCl₃): 0.35; Mp: 184-186 °C; IR (KBr): v 3200, 3123, 1575, 1503, 1324, 1021 cm⁻¹; ¹H NMR (CDCl₃, 300.13 MHz): δ 1.25-1.40 (m, 3H), 1.54-1.79 (m, 3H), 1.93-2.18 (m, 2H), 3.53-3.63 (m, 1H), 5.90 (s, 1H), 6.97 (s, 1H), 7.18-7.28 (m, 4H), 7.48 (d, ³*J*_{HH} = 8.1 Hz, 2H); ¹³C NMR (CDCl₃, 75.5 MHz): δ 24.2 (CH₂), 24.9 (CH₂), 32.0 (CH₂), 34.0 (CH₂), 64.2 (CH), 72.6 (CH), 113.0 (CH), 124.4 (2CH), 126.3 (CH), 128.2 (2CH), 133.6 (C), 136.1 (CH), 140.6 (C); MS (ESI⁺, *m/z*): 243 [(M+H)⁺, 100%]; (*S*,*S*)-4c: [α]²⁰_D: +31.5 (*c* 1, CHCl₃), 99% *ee*; Analytical separation (HPLC) Chiralcel OD *n*-hexane/2-propanol (80:20), 0.8 mL/min, 20 °C, t_R (*R*,*R*)= 17.2 min, t_R (*S*,*S*)= 22.2 min.

Spectroscopical data of (1*S*,2*S*)-2-(2-methyl-1*H*-imidazol-1-yl)cyclohexanol (4d)

(1*S*,2*S*)-2-(2-methyl-1*H*-imidazol-1-yl)cyclohexanol (4d). *R*_f (10% MeOH/CHCl₃): 0.36; Mp: 137-139 °C; IR (KBr): v 3319, 2925, 1525, 1221, 1123 cm⁻¹; ¹H NMR (CDCl₃, 300.13 MHz): δ 1.30-2.10 (m, 8H), 2.24 (s, 3H), 3.53-3.63 (m, 2H), 5.90 (s, 1H), 6.54 (s, 1H), 6.69 (s, 1H); ¹³C NMR (CDCl₃, 75.5 MHz): δ 13.2 (CH₃), 24.2 (CH₂), 25.0 (CH₂), 32.0 (CH₂), 34.2 (CH₂), 61.8 (CH), 72.9 (CH), 114.4 (CH), 126.7 (CH), 145.0 (C); MS (ESI⁺, *m*/*z*): 181 [(M+H)⁺, 100%]; (*S*,*S*)-4d: [α]²⁰_D: +11.3 (*c* 1, CHCl₃), 95% *ee*; Analytical separation (HPLC): Chiralcel OD *n*-hexane/2-propanol (90:10), 0.8 mL/min, 20 °C, t_R (*S*,*S*)= 15.8 min, t_R (*R*,*R*)= 25.1 min.

Spectroscopical data of (1S,2S)-2-(2-phenyl-1H-imidazol-1-yl)cyclohexanol (4e)

(1*S*,2*S*)-2-(2-phenyl-1*H*-imidazol-1-yl)cyclohexanol (4e). R_f (3% MeOH/CHCl₃): 0.30; Mp: 201-203 °C; IR (KBr): v 2953, 2924, 2854, 1465, 1377, 1265, 1090, 961 cm⁻¹; ¹H NMR (CD₃OD, 300.13 MHz): δ 1.40-2.29 (m, 8H), 3.98-4.20 (m, 2H), 7.27 (s, 1H), 7.55 (s, 1H), 7.66-7.85 (m, 5H); ¹³C NMR (CD₃OD, 75.5 MHz): δ 26.6 (CH₂), 27.4 (CH₂), 35.7 (CH₂), 37.2 (CH₂), 64.7 (CH), 75.1 (CH), 119.6 (CH), 129.8 (CH), 130.9 (2CH), 131.5 (CH), 132.1 (2CH), 133.2 (C), 150.5 (C); MS (ESI⁺, *m/z*): 243 [(M+H)⁺, 100%]; Analytical separation (HPLC) Chiralpak IA *n*-hexane/2-propanol (90:10), 0.8 mL/min, 40 °C, t_R (*S*,*S*)= 15.8 min, t_R (*S*,*S*)= 25.1 min.

(1*R*,2*R*)-2-(1*H*-imidazol-1-yl)cyclopentyl acetate (5a). *R*_f (5% MeOH/CHCl₃): 0.30; IR (NaCl): v 3433, 3116, 2970, 2880, 1738, 1502, 1375, 1241, 1084, 1050 cm⁻¹; ¹H NMR (CDCl₃, 300.13 MHz): δ 1.65-1.76 (m, 1H), 1.86-1.98 (m, 3H), 2.00 (s, 3H), 2.17-2.38 (m, 2H), 4.44 (dt, ³*J*_{HH} = 7.9, 5.6 Hz, 1H), 5.06 (dt, ³*J*_{HH} = 7.4, 5.6 Hz, 1H), 6.97 (s, 1H), 7.06 (s, 1H), 7.64 (s, 1H); ¹³C NMR (CDCl₃, 75.5 MHz): δ 20.9 (CH₂), 21.1 (CH₃), 29.9 (CH₂), 30.1 (CH₂), 62.5 (CH), 79.9 (CH), 117.3 (CH), 128.8 (CH), 136.0 (CH), 170.4 (C); MS (ESI⁺, *m/z*): 217 [(M+Na)⁺, 95%], 195 [(M+H)⁺, 100%]; (*R*,*R*)-**5a**: $[\alpha]^{20}_{D}$: -61.8 (*c* 1, CHCl₃), >99% *ee*; Analytical separation (HPLC): Chiralcel OB-H *n*-hexane/EtOH (95:5), 0.8 mL/min, 20 °C, t_{*R*} (*S*,*S*)= 20.8 min, t_{*R*} (*R*,*R*)= 24.0 min.

Spectroscopical data of (1*R*,2*R*)-2-(4-methyl-1*H*-imidazol-1-yl)cyclopentyl acetate (5b)

(1*R*,2*R*)-2-(4-methyl-1*H*-imidazol-1-yl)cyclopentyl acetate (5b). *R*_f (5% MeOH/CHCl₃): 0.31; IR (NaCl): v 3129, 2969, 2879, 1737, 1498, 1475, 1374, 1240, 1046 cm⁻¹; ¹H NMR (CDCl₃, 300.13 MHz): δ 1.60-1.75 (m, 1H), 1.87-2.01 (m, 3H), 2.01 (s, 3H), 2.03-2.35 (m, 2H), 4.38 (q, ³*J*_{HH} = 6.07 Hz, 1H), 4.98-5.14 (m, 1H), 6.69 (s, 1H), 7.62 (s, 1H); ¹³C NMR (CDCl₃, 75.5 MHz): δ 13.0 (CH₃), 20.1 (CH₂), 20.8 (CH₃), 29.9 (CH₂), 30.0 (CH₂), 62.5 (CH), 79.8 (CH), 113.6 (CH), 134.9 (CH), 137.6 (C), 170.4 (C); MS (ESI⁺, *m/z*): 231 [(M+Na)⁺, 100%], 209 [(M+H)⁺, 45%]; (*R*,*R*)-5b: [α]²⁰_D: -46.3 (*c* 1, CHCl₃), >99% *ee*; Analytical separation (HPLC) Chiralcel OB-H *n*-hexane/EtOH (98:2), 0.8 mL/min, 20 °C, t_{*R*} (*R*,*R*)= 39.9 min, t_{*R*} (*S*,*S*)= 46.8 min. Spectroscopical data of (1*R*,2*R*)-2-(4-phenyl-1*H*-imidazol-1-yl)cyclopentyl acetate (5c)

(1*R*,2*R*)-2-(4-phenyl-1*H*-imidazol-1-yl)cyclopentyl acetate (5c). *R*_f (5% MeOH/CHCl₃): 0.48; IR (NaCl): v 2968, 1736, 1606, 1484, 1373, 1240, 1047, 749 cm⁻¹; ¹H NMR (CDCl₃, 300.13 MHz): δ 1.74-1.85 (m, 1H), 1.93-2.05 (m, 3H), 2.07 (s, 3H), 2.24-2.34 (m, 1H), 2.40-2.46 (m, 1H), 4.56 (td, ${}^{3}J_{HH} = 7.9$, 5.9 Hz, 1H), 5.15 (dt, ${}^{3}J_{HH} = 7.4$, 5.7 Hz, 1H), 7.30-7.43 (m, 4H), 7.79 (d, ${}^{3}J_{HH} = 7.8$ Hz, 2H), 8.11 (s, 1H); ¹³C NMR (CDCl₃, 75.5 MHz): δ 20.9 (CH₂), 21.1 (CH₃), 30.0 (CH₂), 30.1 (CH₂), 63.5 (CH), 79.7 (CH), 113.1 (CH), 125.1 (2CH), 127.8 (CH), 128.7 (2CH), 135.7 (CH), 140.1 (C), 145.3 (C), 170.4 (C); MS (ESI⁺, *m/z*): 293 [(M+Na)⁺, 65%], 271 [(M+H)⁺, 100%]; (*R*,*R*)-5c: [α]²⁰_D: -54.5 (*c* 1, CHCl₃), >99% *ee*; Analytical separation (HPLC): Chiralpak AS *n*-hexane/EtOH (96:4), 0.8 mL/min, 40 °C, t_{*R*} (*R*,*R*)= 16.5 min, t_{*R*} (*R*,*R*)= 19.9 min.

Spectroscopical data of (1R, 2R)-2-(2-methyl-1*H*-imidazol-1-yl)cyclopentyl acetate (5d)

(1*R*,2*R*)-2-(2-methyl-1*H*-imidazol-1-yl)cyclopentyl acetate (5d). *R*_f (5% MeOH/CHCl₃): 0.29; IR (NaCl): v 2972, 2881, 2487, 2361, 1959, 1793, 1528, 1498, 1422, 1374, 1240, 1152, 1048, 913, 754 cm⁻¹; ¹H NMR (CDCl₃, 300.13 MHz): δ 1.66-1.70 (m, 1H), 1.72-1.98 (m, 3H), 2.02 (s, 3H), 2.18-2.37 (m, 2H), 2.45 (s, 3H), 4.45 (q, ³*J*_{HH} = 7.1 Hz, 1H), 5.04 (q, ³*J*_{HH} = 7.1 Hz, 1H), 6.84 (s, 1H), 6.95 (s, 1H); ¹³C NMR (CDCl₃, 75.5 MHz): δ 12.4 (CH₃), 20.5 (CH₂), 20.7 (CH₃), 29.6 (CH₂), 29.9 (CH₂), 60.5 (CH), 79.6 (CH), 114.9 (CH), 126.3 (CH), 144.6 (C), 169.8 (C); MS (ESI⁺, *m/z*): 231 [(M+Na)⁺, 30%], 209 [(M+H)⁺, 100%]; (*R*,*R*)-5d: [α]²⁰_D: +3.3 (*c* 1, CHCl₃), 95% *ee*; Analytical separation (HPLC) Chiralcel OD *n*-hexane/2-propanol (90:10), 0.8 mL/min, 20 °C, t_{*R*} (*R*,*R*)= 13.0 min, t_{*R*} (*S*,*S*)= 18.1 min. Spectroscopical data of (1*S*,2*R*)-2-(2-phenyl-1*H*-imidazol-1-yl)cyclopentyl acetate (5e)

(1*R*,2*R*)-2-(2-phenyl-1*H*-imidazol-1-yl)cyclopentyl acetate (5e). *R*_f (5% MeOH/CHCl₃): 0.46; IR (NaCl): v 3101, 2970, 2883, 2350, 1727, 1530, 1468, 1416, 1355, 1246, 1130, 1039, 918, 770, 754 cm⁻¹; ¹H NMR (CDCl₃, 300.13 MHz): δ 1.59-1.70 (m, 1H), 1.73-1.94 (m, 3H), 1.95 (s, 3H), 2.16-2.35 (m, 2H), 4.57 (q, ³*J*_{HH} = 6.9 Hz, 1H), 5.16 (q, ³*J*_{HH} = 6.9 Hz, 1H), 7.06 (d, ³*J*_{HH} = 1.3 Hz, 1H), 7.18 (d, ³*J*_{HH} = 1.3 Hz, 1H), 7.45-7.47 (m, 3H), 7.65-7.71 (m, 2H); ¹³C NMR (CDCl₃, 75.5 MHz): δ 20.9 (CH₂), 21.1 (CH₃), 30.0 (CH₂), 31.1 (CH₂), 62.8 (CH), 79.8 (CH), 116.2 (CH), 128.4 (2CH), 128.7 (CH), 129.2 (CH), 129.3 (2CH), 130.6 (C), 148.5 (C), 170.1 (C); MS (ESI⁺, *m/z*): 293 [(M+Na)⁺, 47%], 271 [(M+H)⁺, 100%]; (*R*,*R*)-**5e**: [α]²⁰_D: +44.6 (*c* 1, CHCl₃), 96% *ee*; Analytical separation (HPLC): Chiralcel OD *n*-hexane/2-propanol (90:10), 0.8 mL/min, 40 °C, t_{*R*} (S,*S*)= 17.7 min, t_{*R*} (*R*,*R*)= 21.7 min.

Spectroscopical data of (1R,2R)-2-(1H-imidazol-1-yl)cyclohexyl acetate (6a)

(1*R*,2*R*)-2-(1*H*-imidazol-1-yl)cyclohexyl acetate (6a). *R*_f (5% MeOH/CHCl₃): 0.25; IR (NaCl): v 3390, 2942, 2864, 1734, 1499, 1376, 1329, 1083, 1053, 1031 cm⁻¹; ¹H NMR (CDCl₃, 300.13 MHz): δ 1.33-1.52 (m, 3H), 1.70-1.96 (m, 6H), 2.07-2.23 (m, 2H), 3.87-4.10 (m, 1H), 4.79-4.94 (m, 1H), 6.96 (s, 1H), 7.05 (s, 1H), 7.74 (s, 1H); ¹³C NMR (CDCl₃, 75.5 MHz): δ 20.6 (CH₃), 23.6 (CH₂), 24.5 (CH₂), 31.1 (CH₂), 32.1 (CH₂), 60.1 (CH), 74.3 (CH), 116.8 (CH), 127.9 (CH), 136.2 (CH), 169.7 (C); MS (ESI⁺, *m/z*): 209 [(M+H)⁺, 100%]; (*R*,*R*)-6a: [α]²⁰_D: -6.5 (*c* 1, CHCl₃), >99% *ee*; Analytical separation (HPLC) Chiralpak AS *n*-hexane/2-propanol (90:10), 0.8 mL/min, 20 °C, t_R (*S*,*S*)= 20.7 min, t_R (*R*,*R*)= 30.9 min. Spectroscopical data of (1*R*,2*R*)-2-(4-methyl-1*H*-imidazol-1-yl)cyclohexyl acetate (6b)

(1*R*,2*R*)-2-(4-methyl-1*H*-imidazol-1-yl)cyclohexyl acetate (6b). *R*_f (5% MeOH/CHCl₃): 0.27; IR (NaCl): v 2965, 2910, 1737, 1525, 1501, 1365, 1331, 1089 cm⁻¹; ¹H NMR (CDCl₃, 300.13 MHz): δ 1.31-1.46 (m, 3H), 1.75-1.90 (m, 6H), 2.11-2.19 (m, 5H), 3.80-3.89 (m, 1H), 4.80-4.89 (m, 1H), 6.62 (s, 1H), 7.36 (s, 1H); ¹³C NMR (CDCl₃, 75.5 MHz): δ 13.6 (CH₃), 20.7 (CH₃), 23.8 (CH₂), 24.6 (CH₂), 31.2 (CH₂), 32.3 (CH₂), 59.6 (CH), 74.4 (CH), 112.8 (CH), 135.6 (CH), 138.1 (C), 169.8 (C); MS (ESI⁺, *m*/*z*): 223 [(M+H)⁺, 100%]; (*R*,*R*)-6b: $[\alpha]^{20}_{D}$: -9.4 (*c* 1, CHCl₃), >99% *ee*; Analytical separation (HPLC): Chiralcel OD *n*-hexane/2-propanol (90:10), 0.8 mL/min, 20 °C, t_R (*S*,*S*)= 12.0 min, t_R (*R*,*R*)= 14.0 min.

Spectroscopical data of (1*R*,2*R*)-2-(4-phenyl-1*H*-imidazol-1-yl)cyclohexyl acetate (6c)

(1*R*,2*R*)-2-(4-phenyl-1*H*-imidazol-1-yl)cyclohexyl acetate (6c). *R*_f (5% MeOH/CHCl₃): 0.24; IR (NaCl): v 2950, 2899, 1735, 1503, 1379, 1329, 1083, cm⁻¹; ¹H NMR (CDCl₃, 300.13 MHz): δ 1.42-1.51 (m, 3H), 1.80-1.95 (m, 6H), 2.20-2.25 (m, 2H), 3.93-4.00 (m, 1H), 4.92-4.98 (m, 1H), 7.23-7.38 (m, 4H), 7.55 (s, 1H), 7.76 (d, ³*J*_{HH} = 8.1 Hz, 2H); ¹³C NMR (CDCl₃, 75.5 MHz): δ 20.7 (CH₃), 23.8 (CH₂), 24.7 (CH₂), 31.3 (CH₂), 32.4 (CH₂), 60.0 (CH), 74.4 (CH), 112.4 (CH), 124.6 (2CH), 126.6 (CH), 128.5 (2CH), 134.0 (C), 136.7 (CH), 142.0 (C), 170.1 (C); MS (ESI⁺, *m/z*): 285 [(M+H)⁺, 100%]; (*R*,*R*)-6c: $[\alpha]^{20}_{D}$: -10.1 (*c* 1, CHCl₃), >99% *ee*; Analytical separation (HPLC): Chiralcel OD *n*-hexane/2-propanol (80:20), 0.8 mL/min, 20 °C, t_{*R*} (*R*,*R*)= 37.4 min, t_{*R*} (*S*,*S*)= 42.4 min. Spectroscopical data of (1*R*,2*R*)-2-(2-methyl-1*H*-imidazol-1-yl)cyclohexyl acetate (6d)

(1*R*,2*R*)-2-(2-methyl-1*H*-imidazol-1-yl)cyclohexyl acetate (6d). *R*_f (5% MeOH/CHCl₃): 0.27; IR (NaCl): v 2975, 2915, 1736, 1537, 1525, 1509, 1360, 1325 cm⁻¹; ¹H NMR (CDCl₃, 300.13 MHz): δ 1.34-1.50 (m, 3H), 1.70-1.90 (m, 6H), 2.05-2.18 (m, 2H), 2.41 (s, 3H), 3.86-3.95 (m, 1H), 6.85 (s, 1H), 6.90 (s, 1H); ¹³C NMR (CDCl₃, 75.5 MHz): δ 13.2 (CH₃), 20.7 (CH₃), 23.8 (CH₂), 24.8 (CH₂), 31.4 (CH₂), 32.4 (CH₂), 58.1 (CH), 74.8 (CH), 115.1 (CH), 127.3 (CH), 144.7 (C), 169.9 (C); MS (ESI⁺, *m/z*): 223 [(M+H)⁺, 100%]; (*R*,*R*)-6d: [α]²⁰_D: -2.4 (*c* 1, CHCl₃), >99% *ee*; Analytical separation (HPLC): Chiralcel OD *n*-hexane/2-propanol (90:10), 0.8 mL/min, 20 °C, t_R (*S*,*S*)= 10.3 min, t_R (*R*,*R*)= 11.4 min.

Spectroscopical data of (1*R*,2*R*)-2-(2-phenyl-1*H*-imidazol-1-yl)cyclohexyl acetate (6e)

(1*R*,2*R*)-2-(2-phenyl-1*H*-imidazol-1-yl)cyclohexyl acetate (6e). *R*_f (5% MeOH/CHCl₃): 0.27; Mp: 114-116 °C; IR (KBr): v 2865, 1737, 1646, 1467, 1417, 1375, 1237, 1038 cm⁻¹; ¹H NMR (CDCl₃, 300.13 MHz): δ 1.26-1.46 (m, 3H), 1.73-1.85 (m, 6H), 2.00-2.14 (m, 2H), 4.17-4.27 (m, 1H), 4.98-5.07 (m, 1H), 7.07 (s, 1H), 7.13 (s, 1H), 7.44-7.49 (m, 5H); ¹³C NMR (CDCl₃, 75.5 MHz): δ 20.6 (CH₃), 23.7 (CH₂), 24.5 (CH₂), 31.3 (CH₂), 33.2 (CH₂), 58.5 (CH), 74.6 (CH), 116.4 (CH), 128.5 (2CH), 128.6 (CH), 128.7 (CH), 129.1 (2CH), 130.6 (C), 148.1 (C), 169.6 (C); MS (ESI⁺, *m/z*): 285 [(M+H)⁺, 100%]; (*R*,*R*)-**6e**: $[\alpha]^{20}_{D}$: +91.0 (*c* 1, CHCl₃), >99% *ee*; Analytical separation (HPLC): Chiralcel OJ-H *n*-hexane/2-propanol (90:10), 0.8 mL/min, 40 °C, t_{*R*} (*R*,*R*)= 8.0 min, t_{*R*} (*S*,*S*)= 8.8 min.

Chemoenzymatic Synthesis of Optically Active 2-(2- or 4-substituted-1H-

imidazol-1-yl)cyloalcanols. Chiral additives for (L)-Proline

Raúl Porcar,^a Nicolás Ríos-Lombardía,^b Eduardo Busto,^b Vicente Gotor-Fernández,^b Vicente Gotor ^{b*}, Eduardo García-Verdugo,^a M. Isabel Burguete,^a Santiago V. Luis^{a*}

 ^a Departamento de Química Inorgánica y Orgánica, Universitat Jaume I Av. Vicent Sos Boynat s/n 12071, Castellón de la Plana, Spain. Fax: +34964728214 sluiss@uji.es
^b Departamento de Química Orgánica e Inorgánica, Universidad de Oviedo, 33006 Oviedo, Spain. Fax: +34 985 103448. vgs@uniovi.es

NMR Spectra (page 1 of 41 pages)

Table of Contents

(1S,2S)-2-(1H-imidazol-1-yl)cyclopentanol (3a)	.S2
(1S,2S)-2-(4-methyl-1H-imidazol-1-yl)cyclopentanol (3b)	_S4
(1S,2S)-2-(4-phenyl-1H-imidazol-1-yl)cyclopentanol (3c)	.S6
(1S,2S)-2-(2-methyl-1H-imidazol-1-yl)cyclopentanol (3d)	<u>.</u> S8
(1S,2S)-2-(2-phenyl-1 <i>H</i> -imidazol-1-yl)cyclopentanol (3e)	<u>.</u> S10
(1S,2 <i>S</i>)-2-(1 <i>H</i> -imidazol-1-yl)cyclohexanol (4a)	. <mark>S12</mark>
(1S,2S)-2-(4-methyl-1 <i>H</i> -imidazol-1-yl)cyclohexanol (4b)	<u>.</u> S14
(1S,2S)-2-(4-phenyl-1 <i>H</i> -imidazol-1-yl)cyclohexanol (4c)	_S16
(1S,2S)-2-(2-methyl-1 <i>H</i> -imidazol-1-yl)cyclohexanol (4d)	_S18
(1S,2S)-2-(2-phenyl-1 <i>H</i> -imidazol-1-yl)cyclohexanol (4e)	_S20
(1 <i>R</i> ,2 <i>R</i>)-2-(1 <i>H</i> -imidazol-1-yl)cyclopentyl acetate (5a)	_S22
(1 <i>R</i> ,2 <i>R</i>)-2-(4-methyl-1 <i>H</i> -imidazol-1-yl)cyclopentyl acetate (5b)	.S24
(1 <i>R</i> ,2 <i>R</i>)-2-(4-phenyl-1 <i>H</i> -imidazol-1-yl)cyclopentyl acetate (5c)	.S26
(1 <i>R</i> ,2 <i>R</i>)-2-(2-methyl-1 <i>H</i> -imidazol-1-yl)cyclopentyl acetate (5d)	.S28
(1 <i>R</i> ,2 <i>R</i>)-2-(2-phenyl-1 <i>H</i> -imidazol-1-yl)cyclopentyl acetate (5e)	.S30
(1 <i>R</i> ,2 <i>R</i>)-2-(1 <i>H</i> -imidazol-1-yl)cyclohexyl acetate (6a)	.S32
(1 <i>R</i> ,2 <i>R</i>)-2-(4-methyl-1 <i>H</i> -imidazol-1-yl)cyclohexyl acetate (6b)	_S34
(1 <i>R</i> ,2 <i>R</i>)-2-(4-phenyl-1 <i>H</i> -imidazol-1-yl)cyclohexyl acetate (6c)	.S36
(1 <i>R</i> ,2 <i>R</i>)-2-(2-methyl-1 <i>H</i> -imidazol-1-yl)cyclohexyl acetate (6d)	_S38
(1 <i>R</i> ,2 <i>R</i>)-2-(2-phenyl-1 <i>H</i> -imidazol-1-yl)cyclohexyl acetate (6e)	_S40

(ppm)

н

(ppm)

1

(ppm)

1

(ppm)

(ppm)

(ppm)

S35

S41