Electronic Supplementary Information

Probing the bifunctional catalytic activity of ceria nanorods towards the cyanosilylation reaction

Gonghua Wang,^{*a*, †} Lu Wang,^{*b*} Xiang Fei,^{*a*,} * Yunyun Zhou, ^{*a*} Renat F. Sabirianov,^{*b*} Wai Ning Mei^{*b*}

and Chin Li Cheung^a,*

^aDepartment of Chemistry and Nebraska Centre for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln,

NE 68588, United States.

^bDepartment of Physics, University of Nebraska at Omaha, Omaha, NE 68182, United States

[†] Current address: Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, United States.

*Phone: 1-402-472-5172; Fax: 1-402-472-9402; Email: ccheung2@unl.edu; xfei@huskers.unl.edu

Fig. S1 TEM images of ceria catalysts before activation: (a) as-synthesized ceria nanorods and (b) aspurchased bulk ceria.

Fig. S2 XRD patterns of ceria catalysts: (red) as-synthesized ceria nanorods, (green) activated ceria nanorods, (blue) as-purchased bulk ceria and (black) activated bulk ceria. XRD peaks are indexed according to ICDD card 04-013-4361 with respect to the cubic $Fm\bar{3}m$ structure of cerium (IV) oxide (CeO₂).

Fig. S3 Fourier transformed Ce L_3 -edge EXAFS data of unactivated ceria nanorods. The inset data are the corresponding EXAFS functions in *k* space. (Red lines: data; black dotted lines: fittings.)

Sample	Bond	Ν	R (Å)	σ (10 ⁻³ Å ²)	ΔE (eV)
Unactivated ceria nanorods	Ce-O	7.0 ± 0.1	2.11 ± 0.01	8.7±1.5	-0.84 ± 0.57
	Ce-Ce	7.7 ± 0.2	3.92 ± 0.02	17.4 ± 5.2	-2.68 ± 1.51
	Ce-O	18.4 ± 2.1	4.44 ± 0.02	15.1 ± 4.9	$\textbf{-1.68} \pm 0.14$
Activated ceria nanorods ^a	Ce-O	6.3 ± 0.1	2.29 ± 0.01	2.4 ± 0.2	2.5 ±0.2
	Ce-Ce	7.4 ± 0.4	3.82 ± 0.01	2.2 ± 0.5	-0.2 ± 0.4
	Ce-O	14.7 ± 1.2	4.52 ± 0.01	3.4 ± 0.5	0.8 ± 0.4
Bulk ceria ^a	Ce-O	8.0 ± 0.1	2.32 ± 0.01	0.1 ± 0.2	5.8 ± 0.2
	Ce-Ce	12.0 ± 0.3	3.82 ± 0.01	0.1 ± 0.5	-0.8 ± 0.4
	Ce-O	24.0 ± 1.2	4.48 ± 0.01	1.5 ± 0.5	1.6 ± 0.4

Table S1 Parameters of the local structure around Ce atoms obtained from curve fitting of the Ce L_{III} edge EXAFS for unactivated and activated ceria nanorods and bulk ceria.

Notes: ^a Data for similarly prepared samples reported in reference 2b of the text.

Fig. S4 NMR spectrum of the reaction mixture for reaction between benzaldehyde and TMSCN in Table 2 Entry 1 catalyzed by activated ceria nanorods after 1.5 hours of reaction time.

Fig. S5 NMR spectrum of the reaction mixture for reaction between 4-methoxybenzaldehyde and TMSCN in Table 2 Entry 2 catalyzed by activated ceria nanorods after 1.5 hours of reaction time.

Fig. S6 NMR spectrum of the reaction mixture for reaction between 4-bromobenzaldehyde and TMSCN in Table 2 Entry 3 catalyzed by activated ceria nanorods after 1.5 hours of reaction time.

Fig. S7 NMR spectrum of the reaction mixture for reaction between 4-fluorobenzaldehyde and TMSCN in Table 2 Entry 4 catalyzed by activated ceria nanorods after 1.5 hours of reaction time.

Fig. S8 NMR spectrum of the reaction mixture for reaction between 1-naphthaldehyde and TMSCN in Table 2 Entry 5 catalyzed by activated ceria nanorods after 1.5 hours of reaction time.

Yield > 99% The chemical shift for H_a is not detected.

Fig. S9 NMR spectrum of the reaction mixture for reaction between 2-naphthaldehyde and TMSCN in Table 2 Entry 6 catalyzed by activated ceria nanorods after 1.5 hours of reaction time.

Yield > 99% The chemical shift for H_a is not detected.

Fig. S10 NMR spectrum of the reaction mixture for reaction between isonicotinaldehyde and TMSCN in Table 2 Entry 7 catalyzed by activated ceria nanorods after 1.5 hours of reaction time.

Fig. S11 NMR spectrum of the reaction mixture for reaction between 4-nitrobenzaldehyde and TMSCN in Table 2 Entry 8 catalyzed by activated ceria nanorods after 1.5 hours of reaction time.

Fig. S12 NMR spectrum of the reaction mixture for reaction between 3-phenylpropanal and TMSCN in Table 2 Entry 9 catalyzed by activated ceria nanorods after 1.5 hours of reaction time.

Fig. S13 NMR spectrum of the reaction mixture for reaction between heptanal and TMSCN in Table 2 Entry 10 catalyzed by activated ceria nanorods after 1.5 hours of reaction time.

Fig. S14 FTIR spectra of activated ceria nanorods catalyst, the post-reaction catalyst, and the catalysts after impregnation in 4-MBA and TMSCN. The spectra are shifted downward for presentation clarity.

Fig. S15 FTIR spectra of bulk ceria, activated bulk ceria, unactivated ceria nanorods before and after impregnation in (a-c) 4-MBA or (d-f) TMSCN. The spectra of 4-MBA and TMSCN are displayed for comparisons. The spectra are shifted downward for presentation clarity.

Table S2 The infrared absorption frequency correlation table for the infrared spectra in Fig. 3, S14 and S15.

Wavenumber (cm ⁻¹)	Vibration ^{1,2}
3000-2800	CH ₃ C–H stretch
2740	C-H stretch in aldehyde
2190, 2166	C≡N stretch
1680	C=O stretch in aldehyde
1606, 1591, 1508	C-C stretches in the benzene ring
1419	CH ₃ twist
1356	CH_3 wag
1257	Si–CH ₃ umbrella
1055	Si–O–Si asymmetric stretch
912	Silanol Si–O stretch
841	Si-CH ₃ rock

Fig. S16 Structures of (a) CeO₂ slab, (b) CeO_{2-x} slab and (c) TMSCN adsorbed on the CeO_{2-x} slab. Isosurfaces of electron density (isovalue = 0.2 electron/Å³) of the three models color-coded with the electrostatic potential are illustrated from (d, e, f) top view and (g, h, i) zoomed-in angled view, respectively. The negative electrostatic potential around O-sites illustrates that O atoms are negatively charged, particularly that the surface O atoms are even more negatively charged than the subsurface ones. The positive electrostatic potential around Ce-sites suggests that the Ce atoms are positively charged.

Fig. S17 Side view of the optimized structure of a TMSCN molecule chemisorbed on the CeO_{2-x} slab in the ball-and-stick representation.

Table S3 Interatomic bond lengths (Å) in CeO_{2-x} slab, TMSCN and TMSCN adsorbed on the CeO_{2-x}

slab model.

Interatomic bond lengths (Å)	Ce(1)-O	Ce(2)-O	Ce(3)-O	O-Si	Si-C (N)	C-N	Ce(4)-C	Ce(5)-N
CeO _{2-x}	2.48	2.37	2.49	-	-	-	-	-
TMSCN	-	-	_	-	1.86	1.17	_	-
TMSCN adsorbed on CeO _{2-x}	2.61	2.62	2.74	1.68	4.57	1.19	2.82	2.66

Table S4 Binding energies and atomic charges of individual atoms in the adsorption models.

Models	Binding Energy (eV)	Charge (e)								
		Ce(1)	Ce(2)	Ce(3)	0	Si	C(N)	Ν	Ce(4)	Ce(5)
CeO _{2-x}		2.69	2.68	2.74	-1.65	-	-	-	2.86	2.76
TMSCN	-6.28	-	-	-	-	1.51	-0.28	-0.27	-	-
TMSCN adsorbed on CeO _{2-x}	-1.08	2.62	2.66	2.70	-1.42	1.54	-0.36	-0.51	2.85	2.78
CN detached from TMSCN- CeO _{2-x}	4.15	-	-	-	-	-	-0.44	-0.23	-	-
CN adsorbed on CeO_{2-x}	-5.25	2.69	2.71	2.80	-1.64	-	-0.36	-0.54	2.86	2.78
TMS adsorbed on CeO _{2-x}	-2.11	2.61	2.64	2.72	-1.42	1.53	-	-	2.83	2.69

References

(1) Smith, B. C. Infrared spectral interpretation: a systematic approach; 1st ed.; CRC Press LLC: Boca Raton, Florida, 1998.

(2) Thirupathi, B.; Patil, M. K.; Reddy, B. M. Appl. Catal. A 2010, 384, 147-153.