Supporting Information

A silver-free system for the direct C–H auration of arenes and heteroarenes from gold chloride complexes

Nanna Ahlsten, Gregory J. P. Perry, Xacobe C. Cambeiro, Tanya C. Boorman and Igor Larrosa

School of Biological and Chemical Sciences, Joseph Priestley Building, Queen Mary University of London, Mile End Road E1 4NS, London, U.K.

Table of Contents

General Information	S2
General procedure for the preparation of (hetero)aryl-gold compounds	S2
Characterisation data of (hetero)aryl-gold compounds	S2
Mechanistic Studies	S15
Procedure for the titration of ^t Bu ₃ PAuCl with NaOH	S15
Procedure for the titration of ^t Bu ₃ PAuCl with NaO ^t Bu	S15
Preparation of [(^t Bu ₃ PAu) ₃ (µ ³ -O)][BF ₄] 9'	S15
NMR Spectra	S16
References	S78

General Information

All reactions were carried out in disposable vials using reagents obtained from commercial sources and used without further purification. NaOH pellets were ground in an agate mortar immediately before use. Column chromatography was carried out on silica gel, particle size 40-63 μ m, using flash techniques. Analytical thin layer chromatography was performed on pre-coated silica gel F254 plates with visualisation under UV light. Melting points were obtained using a Gallenkamp hot stage apparatus and are uncorrected. IR spectra were recorded using a Bruker Tensor 37 FTIR machine, relevant bands are quoted in cm⁻¹. ¹H NMR spectra, recorded at 400 or 600 MHz, are referenced to the residual solvent peak at 7.26 ppm (CDCl₃), 3.31 ppm (CD₃OD) or 7.16 ppm (C₆D₆), and quoted in ppm to 2 decimal places with coupling constants (*J*) to the nearest 0.1 Hz. ¹³C NMR spectra, recorded at 100 MHz or 151 MHz, are referenced to the solvent peak at 77.16 ppm (CDCl₃) or 128.06 ppm (C₆D₆) and quoted in ppm to 1 decimal place with coupling constants (*J*) to the nearest 0.1 Hz. ¹⁹F {¹H} NMR spectra were recorded at 376 or 565 MHz in CDCl₃ or C₆D₆ and quoted in ppm to 2 decimal places and with coupling constants (*J*) to the nearest 0.1 Hz. ³¹P {¹H} NMR spectra were recorded at 162 MHz in CDCl₃ and quoted in ppm to 1 decimal place and with coupling constants (*J*) to the nearest 0.1 Hz. ³¹P {¹H} NMR spectra were recorded at 162 MHz in CDCl₃ and quoted in ppm to 1 decimal place and with coupling constants (*J*) to the nearest 0.1 Hz.

General procedure for the preparation of (hetero)aryl-gold compounds

A mixture of [Au(PR₃)Cl] (R = ^tBu, Et, Ph; 0.060 mmol), (hetero)arene (0.24 mmol) and base (NaOH or NaO'Bu; 0.24 mmol) was dissolved in DMF or 1,4-dioxane (0.30 mL). The reaction mixture was stirred at the temperature and for the time indicated. The mixture was allowed to cool down to room temperature, CH_2Cl_2 (5 mL) was added, and the suspension was filtered through a plug of celite. Evaporation of the solvent under vacuum and purification by silica gel column chromatography afforded the corresponding (hetero)aryl-Au(I) complexes.

Characterisation data of (hetero)aryl-gold compounds

2,6-Dinitrophenyl(tri-tert-butylphosphine)gold(I) 3aa

The general procedure was applied with $[Au(P'Bu_3)Cl]$ (26 mg, 0.060 mmol), 1,3-dinitrobenzene (40 mg, 0.24 mmol) and NaO'Bu (23 mg, 0.24 mmol) in DMF at 75 °C for 5 h. Column chromatography (hexane/EtOAc 100:0 - 95:5) afforded the title product as a yellow solid (28 mg, 82%).

Spectroscopic data matched those previously reported.¹

¹H NMR (400 MHz, CDCl₃) δ 8.19 (dd, *J* = 8.0, 1.1 Hz, 2H), 7.33 (t, *J* = 8.0 Hz, 1H), 1.56 (d, *J* = 13.3 Hz, 27H). ¹³C NMR (100 MHz, CDCl₃) δ 162.9 (d, *J* = 93.4 Hz), 159.0 (d, *J* = 1.8 Hz), 127.6 (d, *J* = 2.9 Hz), 126.2, 39.1 (d, *J* = 17.0 Hz), 32.5 (d, *J* = 4.6 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 91.4. Anal. Calcd for C₁₈H₃₀AuN₂O₄P: C, 38.27; H, 5.34; N, 4.95. Found: C, 38.24; H, 5.06; N, 4.94.

$$^{t}Bu_{3}P-Au \xrightarrow{F}_{F}F$$

Pentafluorophenyl(tri-tert-butylphosphine)gold(I) 3ab

The general procedure was applied with [Au(PⁱBu₃)Cl] (30 mg, 0.070 mmol), pentafluorobenzene (31 μ L, 0.28 mmol) and NaOⁱBu (27 mg, 0.28 mmol) in DMF at 50°C for 15 h. Column chromatography (hexane/DCM 100:0 - 90:10) afforded the title product as a white solid (36 mg, 79%).

Spectroscopic data matched those previously reported.¹

¹H NMR (400 MHz, CDCl₃) δ 1.56 (d, J = 13.3 Hz, 27H). ³¹C NMR (151 MHz, CDCl₃) δ (C *ipso* to Au not observed), 148.7 (dm, J = 226.7 Hz), 138.9 (dm, J = 236.3 Hz), 137.4 (dm, J = 251.5 Hz), 39.5 (d, J = 16.7 Hz), 32.6 (d, J = 3.9 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 92.1 (app. quint., J = 6.8 Hz). ¹⁹F NMR (367 MHz, CDCl₃) δ -116.65 - -116.82 (m), -159.56 (t, J = 19.7 Hz), -162.60 - -162.80 (m). Anal. Calcd for C₁₈H₂₇AuF₅P: C, 38.17; H, 4.81. Found: C, 38.60; H, 4.57. Accurate elemental analysis was not obtained due to product decomposition.

2,3,5,6-Tetrafluorophenyl(tri-tert-butylphosphine)gold(I) 3ac

The general procedure was applied with $[Au(P^tBu_3)Cl]$ (26 mg, 0.060 mmol), 1,2,4,5-tetrafluorobenzene (27 µL, 0.24 mmol) and NaOH (10 mg, 0.24 mmol) in 1,4-dioxane at 50 °C for 15 h. Column chromatography (hexane/EtOAc 100:0 - 95:5) afforded the title product as a white solid (32 mg, 96%).

¹H NMR (400 MHz, CDCl₃) δ 6.68 (tt, J = 9.3, 6.8 Hz, 1H), 1.57 (d, J = 13.2 Hz, 27H). ¹³C NMR (151 MHz, CDCl₃) δ (C *ipso* to Au not observed), 149.0 (dm, J = 225.6 Hz), 146.1 (dm, J = 249.6 Hz), 103.0 (t, J = 23.5 Hz), 39.5 (d, J = 16.7 Hz), 32.6 (d, J = 4.2 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 92.1 (app. quint, J = 6.8 Hz). ¹⁹F NMR (367 MHz, CDCl₃) δ –118.72 – 118.88 (m), –140.68 – 140.80 (m). IR (ATR) 2953, 1452, 1189, 1173, 888, 705. m.p. 120-122 °C. HRMS (EI) *m/z* calcd. C₁₈H₂₈AuF₄P: [M]⁺ 548.1525; found: [M]⁺ 548.1515. Anal. Calcd for C₁₈H₂₈AuF₄P: C, 39.43; H, 5.15. Found: C, 39.60; H, 4.91.

2,4,6-Trifluorophenyl(tri-tert-butylphosphine)gold(I) 3ad

The general procedure was applied with [Au(PⁱBu₃)Cl] (30 mg, 0.070 mmol), 1,3,5-trifluorobenzene (29 μ L, 0.28 mmol) and NaOⁱBu (27 mg, 0.28 mmol) in DMF at 50 °C for 3 h. Removal of starting material *in vacuo* afforded the title product as a white solid (36 mg, 98%).

Spectroscopic data matched those previously reported.¹

¹H NMR (400 MHz, CDCl₃) δ 6.59 - 6.55 (m, 2H), 1.56 (d, J = 13.1 Hz, 27H). ¹³C NMR (151 MHz, CDCl₃) δ (C *ipso* to Au not observed), 168.4 (dddd, J = 230.7, 29.1, 14.8, 3.6 Hz), 161.8 (dt, J = 242.3, 14.1 Hz), 98.6 (app. ddt, J = 36.1, 24.2, 3.7 Hz), 39.4 (d, J = 16.4 Hz), 32.6 (d, J = 4.0 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 92.3 (t, J = 6.3 Hz). ¹⁹F NMR (367 MHz, CDCl₃) δ -86.14 (t, J = 6.6 Hz), -114.97 - -115.02 (m). Anal. Calcd for C₁₈H₂₉AuF₃P: C, 40.76; H, 5.51. Found: C, 41.18; H, 5.01. Accurate elemental analysis was not obtained due to product decomposition.

2,6-Difluorophenyl(tri-tert-butylphosphine)gold(I) 3ae

The general procedure was applied with [Au(P^tBu₃)Cl] (30 mg, 0.070 mmol), 1,3-difluorobenzene (27 μ L, 0.28 mmol) and NaO^tBu (27 mg, 0.28 mmol) in DMF at 50 °C for 24 h. Removal of starting material *in vacuo* afforded the title product as a white solid (33 mg, 94%).

Spectroscopic data matched those previously reported.¹

¹H NMR (400 MHz, CDCl₃) δ 7.05-6.98 (m, 1H), 6.85-6.81 (m, 2H), 1.57 (d, J = 13.0 Hz, 27H). ¹³C NMR (151 MHz, CDCl₃) δ (C *ipso* to Au not observed), 168.9 (ddd, J = 230.8, 24.5, 3.8 Hz), 127.5 (t, J = 8.4 Hz), 109.9 (app. dt, J = 30.8, 2.9 Hz), 39.4 (d, J = 16.0 Hz), 32.5 (d, J = 4.6 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 92.5 (t, J = 6.5 Hz). ¹⁹F NMR (565 MHz, CDCl₃) δ -88.30 (d, J = 6.5 Hz). Anal. Calcd for C₁₈H₃₀AuF₂P: C, 42.19; H, 5.90. Found: C, 41.44; H, 5.56. Accurate elemental analysis was not obtained due to product decomposition.

2-Fluoro-6-nitrophenyl(tri-tert-butylphosphine)gold(I) 3af

The general procedure was applied with $[Au(P^tBu_3)Cl]$ (26 mg, 0.060 mmol), 1-fluoro-3-nitrobenzene (26 μ L, 0.24 mmol) and NaOH (10 mg, 0.24 mmol) in DMF at 50 °C for 15 h. Column chromatography (hexane/EtOAc 100:0 - 95:5) afforded the title product as a pale yellow solid (28 mg, 90%).

¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, J = 7.9 Hz, 1H), 7.25-7.21 (m, 1H), 7.17 (app. td, J = 7.9, 6.1 Hz, 1H), 1.58 (d, J = 13.1 Hz, 27 H). ¹³C NMR (100 MHz, CDCl₃) δ 168.2 (dd, J = 230.6 Hz, 3.9 Hz), 158.2 (d, J = 21.7 Hz), 153.9 (dd, J = 93.7, 68.6 Hz), 126.9 (d, J = 7.0 Hz), 119.8 (app t, J = 3.0 Hz), 118.8 (dd, J = 32.3, 2.3 Hz), 39.3 (d, J = 16.7 Hz), 32.6 (d, J = 4.6 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 91.9 (d, J = 3.7 Hz). ¹⁹F NMR (367 MHz, CDCl₃) δ -83.63 (d, J = 3.7 Hz). IR (ATR) 2954, 1510, 1338, 1213, 798. m.p. 160-162 °C. HRMS (EI) m/z calcd. C₁₈H₃₀AuFNO₂P: [M]⁺ 539.1656; found: [M]⁺ 539.1645. Anal. Calcd for C₁₈H₃₀AuFNO₂P: C, 40.08; H, 5.61; N, 2.60. Found: C, 37.88; H, 4.09; N, 2.27. Accurate elemental analysis was not obtained due to product decomposition.

4-Bromo-2,6-difluorophenyl(tri-tert-butylphosphine)gold(I) 3ag

The general procedure was applied with $[Au(P'Bu_3)Cl]$ (26 mg, 0.060 mmol), 1-bromo-3,5-difluorobenzene (28 µL, 0.24 mmol) and NaO'Bu (23 mg, 0.24 mmol) in DMF at 35 °C for 15 h. Column chromatography (hexane/EtOAc 100:0 - 95:5) afforded the title product as a white solid (29 mg, 82%) in a 99:1 mixture with its C3 regioisomer.

¹H NMR (400 MHz, CDCl₃) δ 6.99 (dd, J = 4.1, 1.6 Hz, 2H), 1.56 (d, J = 13.1 Hz, 27H). ¹³C NMR (100 MHz, CDCl₃) δ 168.7 (ddd, J = 234.0, 26.5, 3.7 Hz), 142.2 (dt, J = 93.8, 62.1 Hz), 118.3 (t, J = 11.2 Hz), 113.7 (app. dt, J = 35.3, 3.3 Hz), 39.4 (d, J = 16.4 Hz), 32.6 (d, J = 4.5 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 92.3 (t, J = 6.3 Hz). ¹⁹F NMR (367 MHz, CDCl₃) δ -86.64 (d, J = 6.3 Hz). IR (ATR) 2997, 1579, 1392, 1171, 983, 834. m.p. 120-122 °C. HRMS (EI) m/z calcd. C₁₈H₂₉AuBrF₂P: [M]⁺ 590.0817; found: [M]⁺ 590.0808. Anal. Calcd for C₁₈H₂₉AuBrF₂P: C, 36.56; H, 4.94. Found: C, 36.31; H, 4.30. Accurate elemental analysis was not obtained due to product decomposition.

2,6-Difluoro-4-iodoophenyl(tri-tert-butylphosphine)gold(I) 3ah

The general procedure was applied with $[Au(P'Bu_3)Cl]$ (26 mg, 0.060 mmol), 3,5-difluoroiodobenzene (58 mg, 0.24 mmol) and NaO'Bu (23 mg, 0.24 mmol) in DMF at 35 °C for 15 h. Column chromatography (hexane/EtOAc 100:0 - 95:5) afforded the title product as a white solid (28 mg, 73%) in a 99:1 mixture with its C3 regioisomer.

¹H NMR (400 MHz, CDCl₃) δ 7.19 (dd, *J* = 4.0, 1.5 Hz, 2H), 1.56 (d, *J* = 13.1 Hz, 27H). ¹³C NMR (100 MHz, CDCl₃) δ 168.5 (ddd, *J* = 235.2, 25.6, 3.6 Hz), 143.3 (dt, *J* = 93.9, 61.9 Hz), 119.4 (app. dt, *J* = 34.5, 3.3 Hz), 88.2 (t, *J* = 9.4 Hz), 39.4 (d, *J* = 16.2 Hz), 32.6 (d, *J* = 4.5 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 92.4 (t, *J* = 6.3 Hz). ¹⁹F NMR (367 MHz, CDCl₃) δ -86.70 (d, *J* = 6.3 Hz). IR (ATR) 2997, 1572, 1391, 1175, 977, 810. m.p. 158-160 °C. HRMS (EI) *m*/*z* calcd. C₁₈H₂₉AuF₂IP: [M]⁺ 638.0680; found: [M]⁺ 638.0675. Anal. Calcd for C₁₈H₂₉AuF₂IP: C, 33.87; H, 4.58. Found: C, 33.79; H, 4.35.

2,3,5,6-Tetrachlorophenyl(tri-tert-butylphosphine)gold(I) 3ai

The general procedure was applied with $[Au(P^tBu_3)Cl]$ (26 mg, 0.060 mmol), 1,2,4,5-tetrachlorobenzene (52 mg, 0.24 mmol) and NaO^tBu (23 mg, 0.24 mmol) in DMF at 50 °C for 15 h. Column chromatography (hexane/EtOAc 100:0 - 95:5) afforded the title product as a white solid (36 mg, 96%).

¹H NMR (400 MHz, CDCl₃) δ 7.22 (s, 1H), 1.57 (d, *J* = 13.1 Hz, 27H). ¹³C NMR (100 MHz, CDCl₃) δ 177.9 (d, *J* = 97.7 Hz), 138.4 (d, *J* = 4.1 Hz), 130.9 (d, *J* = 7.1 Hz), 128.4, 39.5 (d, *J* = 16.3 Hz), 32.5 (d *J* = 4.4 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 90.4. IR (ATR) 2955, 1355, 1149, 1055, 854. m.p. 202-204 °C. HRMS (EI) *m*/*z* calcd. C₁₈H₂₈AuCl₄P: [M]⁺ 614.0315; found: [M]⁺ 614.0296. Anal. Calcd for C₁₈H₂₈AuCl₄P: C, 35.20; H, 4.60. Found: C, 35.40; H, 4.32.

2,4,6-Trichlorophenyl(tri-tert-butylphosphine)gold(I) 3aj

The general procedure was applied with [Au(P'Bu₃)Cl] (26 mg, 0.060 mmol), 1,3,5-trichlorobenzene (44 mg, 0.24 mmol) and NaO'Bu (23 mg, 0.24 mmol) in DMF at 75 °C for 6 h. Column chromatography (hexane/EtOAc 100:0 - 95:5) afforded the title product as a white solid (29 mg, 83%).

¹H NMR (600 MHz, CDCl₃) δ 7.27 (d, J = 1.2 Hz, 2H), 1.56 (d, J = 13.1 Hz, 27H). ¹³C NMR (100 MHz, CDCl₃) δ 172.0 (d, J = 99.5 Hz), 143.7 (d, J = 3.6 Hz), 131.4, 125.9 (d, J = 3.8 Hz), 39.4 (d, J = 15.9 Hz), 32.6 (d, J = 4.6 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 90.9 (s). IR (ATR) 2954, 1172, 903, 726. m.p. 204-208 °C. HRMS (EI) m/z calcd. C₁₈H₂₉AuCl₃P: [M]⁺ 578.0731; found: [M]⁺ 578.0717. Anal. Calcd for C₁₈H₂₉AuCl₃P: C, 37.29; H, 5.04. Found: C, 37.16; H, 5.05.

2,4,6-Trifluorophenyl(triethylphosphine)gold(I) 3bd

The general procedure was applied with [Au(PEt₃)Cl] (21 mg, 0.060 mmol), 1,3,5-trifluorobenzene (25 μ L, 0.24 mmol) and NaO'Bu (23 mg, 0.24 mmol) in DMF at 50 °C for 15 h. Column chromatography (hexane/EtOAc 100:0 - 95:5) afforded the title product as a colourless oil (25 mg, 93%).

Spectroscopic data matched those previously reported.¹

¹H NMR (400 MHz, CDCl₃) δ 6.59 – 6.55 (m, 2H), 1.87 (dq, J = 9.3, 7.7 Hz, 6H), 1.26 (dt, J = 17.9, 7.7 Hz, 9H). ¹³C NMR (151 MHz, CDCl₃) δ (C *ipso* to Au not observed), 168.5 (ddd, 231.3, 28.7, 15.0 Hz) 161.9 (app. dt, 242.7, 14.3 Hz), 98.7 (ddd, 36.2, 24.1, 4.5 Hz), 18.2 (d, J = 31.6 Hz), 9.2. ³¹P NMR (162 MHz, CDCl₃) δ 40.4 (t, J = 7.9 Hz). ¹⁹F NMR (367 MHz, CDCl₃) δ -86.05 (t, J = 7.4 Hz), -114.31 - -114.34 (m).

2,6-Difluorophenyl(triethylphosphine)gold(I) 3be

The general procedure was applied with [Au(PEt₃)Cl] (21 mg, 0.060 mmol), 1,3-difluorobenzene (24 μ L, 0.24 mmol) and NaO'Bu (23 mg, 0.24 mmol) in DMF at 50 °C 15 h. Column chromatography (hexane/EtOAc 100:0 - 95:5) afforded the title product as a colourless oil (24 mg, 90%).

¹H NMR (400 MHz, CDCl₃) δ 7.06-6.99 (m, 1H), 6.86-6.82 (m, 2H), 1.88 (dq, J = 9.2, 7.7 Hz, 6H), 1.27 (dt, J = 17.8, 7.7 Hz, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 168.8 (ddd, J = 231.1, 24.4, 3.9 Hz), 142.5 (dt, J = 102.6, 60.24 Hz), 127.8 (t, J = 8.5 Hz), 109.9 (app dt, J = 30.9, 3.1 Hz), 18.2 (d, J = 31.0 Hz), 9.2. ³¹P NMR (162 MHz, CDCl₃) 40.6 (t, J = 8.1 Hz). ¹⁹F NMR δ (376 MHz, CDCl₃) -88.28 (d, J = 8.1 Hz). IR (ATR) 2967, 1433, 1200, 952, 770. HRMS (EI) m/z calcd. C₁₂H₁₈AuF₂P: [M]⁺ 428.0772; found: [M]⁺ 428.0771.

2,3,5,6-Tetrachlorophenyl(triethylphosphine)gold(I) 3bi

The general procedure was applied with $[Au(PEt_3)Cl]$ (21 mg, 0.060 mmol), 1,2,4,5-tetrachlorobenzene (52 mg, 0.24 mmol) and NaO'Bu (23 mg, 0.24 mmol) in DMF at 50 °C for 15 h. Column chromatography (hexane/EtOAc 100:0 - 95:5) afforded the title product as a white solid (29 mg, 91%).

¹H NMR (400 MHz, CDCl₃) δ 7.22 (s, 1H), 1.87 (dq, *J* = 9.4, 7.7 Hz, 6H), 1.28 (dt, *J* = 17.9, 7.7 Hz, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 177.6 (d, *J* = 107.1 Hz), 138.4 (d, *J* = 3.7 Hz), 130.9 (d, *J* = 7.3 Hz), 128.6, 18.3 (d, *J* = 31.5 Hz), 9.2. ³¹P NMR (162 MHz, CDCl₃) δ 37.9. IR (ATR) 2970, 1455, 1354, 1149, 1050, 765. m.p. 84-86 °C. HRMS (EI) *m*/*z* calcd. C₁₂H₁₆AuCl₄P: [M]⁺ 529.9374; found: [M]⁺ 529.9359. Anal. Calcd for C₁₂H₁₆AuCl₄P: C, 27.19; H, 3.04. Found: C, 27.11; H, 2.91.

2,3,5,6-Tetrachlorophenyl(triphenylphosphine)gold(I) 3ci

The general procedure was applied with $[Au(PPh_3)Cl]$ (30 mg, 0.060 mmol), 1,2,4,5 - tetrachlorobenzene (52 mg, 0.24 mmol) and NaO'Bu (23 mg, 0.24 mmol) in DMF at 50 °C for 15 h. Column chromatography (hexane/EtOAc 100:0 - 95:5) afforded the title product as a white solid (36 mg, 86%).

¹H NMR (400 MHz, CDCl₃) δ 7.65-7.59 (m, 6H), 7.55-7.46 (m, 9H), 7.27 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 175.7 (d, *J* = 109.2 Hz), 138.4 (d, *J* = 4.3 Hz), 134.5 (d, *J* = 13.7 Hz), 131.7 (d, *J* = 2.3 Hz), 130.9 (d, *J* = 8.0 Hz), 130.0, 129.7 (d, *J* = 169.1 Hz), 129.3 (d, *J* = 11.3 Hz). ³¹P NMR (162 MHz,

CDCl₃) δ 39.7. IR (ATR) 3056, 1436, 1100, 905, 730. m.p. 119-122 °C. HRMS (EI) *m/z* calcd. C₂₄H₁₆AuCl₄P: [M]⁺ 671.9404. found: [M]⁺ 671.9398. Anal. Calcd for C₂₄H₁₆AuCl₄P: C, 42.76; H, 2.39. Found: C, 42.41; H, 2.05.

2,3,5,6-Tetrachlorophenyl('BuXPhos)gold(I) 3di

The general procedure was applied with [Au(BuXPhos)Cl] (39 mg, 0.060 mmol), 1,2,4,5-tetrachlorobenzene (52 mg, 0.24 mmol) and NaOBu (23 mg, 0.24 mmol) in DMF at 50 °C for 15 h. Column chromatography (hexane/EtOAc 100:0 - 95:5) afforded the title product as a white solid (22 mg, 42%).

¹H NMR (400 MHz, CDCl₃) δ 7.93 (app. td, J = 7.3, 1.5 Hz, 1H), 7.50-7.43 (m, 2H), 7.34-7.30 (m, 1H), 7.14 (s, 1H), 6.98 (s, 2H), 2.55-2.48 (m, 1H), 2.46-2.37 (m, 2H), 1.48 (d, J = 14.7 Hz, 18H), 1.35 (d, J = 6.8 Hz, 6H), 0.93 (d, J = 6.9 Hz, 6H), 0.90 (d, J = 6.7 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 177.0 (d, J = 101.7 Hz), 148.6 (d, J = 16.1 Hz), 148.4, 145.7, 137.9 (d, J = 4.4 Hz), 135.6 (d, J = 5.1 Hz), 135.4, 134.6 (d, J = 8.1 Hz), 130.3 (d, J = 7.3 Hz), 129.7 (d, J = 33.9 Hz), 129.7 (d, J = 2.2 Hz), 127.5, 126.1 (d, J = 5.9 Hz), 121.7, 38.4 (d, J = 21.2 Hz), 33.3, 31.3 (d, J = 6.6 Hz), 30.9, 26.6, 23.2, 22.7. ³¹P NMR (162 MHz, CDCl₃) δ 62.5. IR (ATR) 2960, 1461, 1370, 1150, 1051, 911, 735. m.p. (decomposition above 240 °C). HRMS (EI) m/z calcd. C₃₅H₄₆AuCl₄P: [M]⁺ 834.1751; found: [M]⁺ 834.1744. Anal. Calcd for C₃₅H₄₆AuCl₄P: C, 50.25; H, 5.54. Found: C, 48.27; H, 4.49. Accurate elemental analysis was not obtained due to product decomposition.

2,4,6-Trichlorophenyl(triethylphosphine)gold(I) 3bj

The general procedure was applied with [Au(PEt₃)Cl] (21 mg, 0.060 mmol), 1,3,5-trichlorobenzene (44 mg, 0.24 mmol) and NaO'Bu (23 mg, 0.24 mmol) in DMF at 50 °C 15 h. Column chromatography (hexane/EtOAc 100:0 - 95:5) afforded a colourless oil (25 mg, 84%).

¹H NMR (400 MHz, CDCl₃) δ 7.26 (s, 2H), 1.86 (dq, J = 9.4 7.6 Hz, 6H), 1.28 (dt, J = 17.8, 7.6 Hz, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 171.8 (d, J = 108.9 Hz), 143.7 (d, J = 3.7 Hz), 131.7, 126.0 (d, J = 4.4. Hz), 18.3 (d, J = 31.3 Hz), 9.2. ³¹P NMR (162 MHz, CDCl₃) δ 38.9. IR (ATR) 2966, 1524, 1348, 1038, 770. HRMS (EI) m/z calcd. C₁₂H₁₇AuCl₃P: [M]⁺ 493.9793; found: [M]⁺ 493.9782.

2,6-Dichlorophenyl(triethylphosphine)gold(I) 3bk

The general procedure was applied with [Au(PEt₃)Cl] (21 mg, 0.060 mmol), 1,3-dichlorobenzene (27 μ L, 0.24 mmol) and NaO'Bu (23 mg, 0.24 mmol) in DMF at 50 °C for 15 h. Column chromatography (hexane/EtOAc 100:0 - 95:5) afforded the title product as a colourless oil (26 mg, 94%).

¹H NMR (400 MHz, CDCl₃) δ 7.24 (d, *J* = 7.9 Hz, 2H), 6.91 (t, *J* = 7.9 Hz, 1H), 1.85 (dq, *J* = 9.3, 7.7 Hz, 6H), 1.28 (dt, J = 17.9, 7.7 Hz, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 173.3 (d, *J* = 108.5 Hz), 143.7 (d, *J* = 3.7 Hz), 127.6, 126.0 (d, *J* = 3.9 Hz), 18.5 (d, *J* = 30.9 Hz), 9.2. ³¹P NMR (162 MHz, CDCl₃) δ 39.0. IR (ATR) 2968, 1408, 1132, 1049, 756. HRMS (EI) *m*/*z* calcd. C₁₂H₁₈AuCl₂P: [M]⁺ 460.0189; found: [M]⁺ 460.0177. Anal. Calcd for C₁₂H₁₈AuCl₂P: C, 31.26; H, 3.93. Found: C, 30.10; H, 3.44. Accurate elemental analysis was not obtained due to product decomposition.

2,6-Dibromophenyl(triethylphosphine)gold(I) 3bo

The general procedure was applied with [Au(PEt₃)Cl] (35 mg, 0.10 mmol), 1,3-dibromobenzene (48 μ L, 0.40 mmol) and NaOH (16 mg, 0.40 mmol) in 1,4-dioxane at 50 °C for 15 h. Column chromatography (hexane/DCM 100:0 - 60:40) afforded the title product as a white solid (36 mg, 66%).

¹H NMR (400 MHz, CDCl₃) δ 7.39 (dd, J = 7.8, 1.5 Hz, 2H), 6.69 (t, J = 7.8 Hz, 1H), 1.77 (dq, J = 9.4, 7.7 Hz, 6H), 1.21 (dt, J = 17.9, 7.7 Hz, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 180.6 (d, J = 109.4 Hz), 134.7 (d, J = 4.6 Hz), 129.4 (d, J = 4.4 Hz), 128.0, 18.4 (d, J = 31.1 Hz), 9.2. ³¹P NMR (162 MHz, CDCl₃) δ 36.9. IR (ATR) 2961, 1528, 1400, 907, 733. m.p. 89-92 °C. HRMS (EI) *m*/*z* calcd. C₁₂H₁₈AuBr₂P: [M]⁺ 547.9172; found: [M]⁺ 547.9167. Anal. Calcd for C₁₂H₁₈AuBr₂P: C, 26.20; H, 3.30. Found: C, 26.62; H, 2.82. Accurate elemental analysis was not obtained due to product decomposition.

$$^{t}Bu_{3}P-Au \xrightarrow{O}_{N}$$

Oxazol-2-yl(tri-tert-butylphosphine)gold(I) 5aa

The general procedure was applied with [Au(P^tBu₃)Cl] (26 mg, 0.060 mmol), oxazole (16 μ L, 0.24 mmol) and NaOH (10 mg, 0.24 mmol) in 1,4-dioxane at 35 °C for 15 h. Column chromatography (hexane/EtOAc 5:1 - 1:1 with 1% Et₃N) afforded the title product as a white solid (27 mg, 95%).

¹H NMR (400 MHz, CDCl₃) δ 7.81 (s, 1H), 7.12 (s, 1H), 1.55 (d, J = 13.2 Hz, 27H). ¹³C NMR (100 MHz, CDCl₃) δ 207.8 (d, J = 137.4 Hz), 138.4 (d, J = 2.1 Hz), 124.8 (d, J = 5.1 Hz) 39.2 (d, J = 16.7 Hz), 32.6 (d, J = 4.5 Hz). ³¹P NMR δ (162 MHz, CDCl₃) δ 90.7. IR (ATR) 2964, 1435, 1172, 1058, 732. m.p. 204-206 °C (decomposition). HRMS (EI) *m*/*z* calcd. C₁₅H₂₉AuNOP: [M]⁺ 467.1645; found:

 $[M]^+$ 467.1645. Anal. Calcd for C₁₅H₂₉AuNOP: C, 38.55; H, 6.25; N, 3.00. Found: C, 36.85; H, 5.67; N, 2.58. Accurate elemental analysis was not obtained due to product decomposition.

Thiazol-2-yl(tri-tert-butylphosphine)gold(I) 5ab

The general procedure was applied with [Au(P^tBu₃)Cl] (11 mg, 0.025 mmol), thiazole (28 μ L, 0.10 mmol) and NaOH (4 mg mg, 0.10 mmol) in 1,4-dioxane at 35 °C for 15 h. Column chromatography (hexane/EtOAc 5:1 - 1:1 with 1% Et₃N) afforded the title product as a white solid (12 mg, 95%).

¹H NMR (400 MHz, CDCl₃) δ 8.20 (d, *J* = 3.1 Hz, 1H), 7.51 (dd, *J* = 3.1, 1.1 Hz, 1H), 1.57 (d, *J* = 13.1 Hz, 27H). ¹³C NMR (100 MHz, CDCl₃) δ 209.4 (d, *J* = 132.8 Hz), 143.7 (d, *J* = 9.7 Hz), 117.6, 39.2 (d, *J* = 16.1 Hz), 32.6 (d, *J* = 4.4 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 90.8. IR (ATR) 2951, 1393, 1170, 918. m.p. 178-183 °C (decomposition). HRMS (EI) *m*/*z* calcd. C₁₅H₂₉AuNPS: [M]⁺ 483.1404. Anal. Calcd for C₁₅H₂₉AuNPS: C, 37.27; H, 6.05; N, 2.90. Found: C, 37.23; H, 5.82; N, 2.62.

Benzoxazol-2-yl(tri-tert-butylphosphine)gold(I) 5ac

The general procedure was applied with $[Au(P^tBu_3)Cl]$ (30 mg, 0.070 mmol), benzoxazole (33 mg, 0.28 mmol) and NaOH (11 mg, 0.28 mmol) in 1,4-dioxane at 35 °C for 15 h. Removal of starting material *in vacuo* afforded the title product as a brown solid (33 mg, 90%).

¹H NMR (400 MHz, CDCl₃) δ 7.67-7.65 (m, 1H), 7.48-7.45 (m, 1H), 7.21-7.19 (m, 2H), 1.59 (d, J = 13.3 Hz, 27H). ¹³C NMR (100 MHz, CDCl₃) δ 210.5 (d, J = 136.4 Hz), 151.4 (d, J = 2.2 Hz), 141.3 (d, J = 5.0 Hz), 123.2, 122.9, 119.0, 110.0, 39.3 (d, J = 16.9 Hz), 32.6 (d, J = 4.4 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 90.7. IR (ATR) 2954, 1441, 1171, 904, 727. m.p. 180-183 °C. HRMS (EI) *m/z* calcd. C₁₉H₃₁AuNOP: [M]⁺ 517.1802; found: [M]⁺ 517.1791. Anal. Calcd for C₁₉H₃₁AuNOP: C, 44.11; H, 6.04; N, 2.71. Found: C, 44.06; H, 5.56; N, 2.67. Accurate elemental analysis was not obtained due to product decomposition.

Benzothiazol-2-yl(tri-tert-butylphosphine)gold(I) 5ad

The general procedure was applied with [Au(P'Bu₃)Cl] (26 mg, 0.060 mmol), benzothiazole (26 μ L, 0.24 mmol) and NaOH (10 mg, 0.24 mmol) in 1,4-dioxane at 35 °C for 15 h. Column chromatography (hexane/EtOAc 5:1 - 1:1) afforded the title product as a white solid (18 mg, 55%).

¹H NMR (400 MHz, CDCl₃) δ 8.12 (d, *J* = 8.1 Hz, 1H), 7.89 (d, *J* = 7.6 Hz, 1H), 7.42-7.38 (m, 1H), 7.32-7.28 (m, 1H), 1.61 (d, *J* = 13.1 Hz, 27H). ¹³C NMR (100 MHz, CDCl₃) δ 212.6 (d, *J* = 132.5 Hz),

155.7 (d, J = 9.5 Hz), 135.3, 124.6, 123.2, 122.3, 121.3, 39.2, (d, J = 16.1 Hz), 32.6 (d, J = 4.4 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 90.7. IR (ATR) 2971, 1400, 1172, 900, 761. m.p. 190-193 °C (decomposition). HRMS (EI) m/z calcd. C₁₉H₃₁AuNPS: [M]⁺ 533.1573; found: [M]⁺ 533.1569. Anal. Calcd for C₁₉H₃₁AuNPS: C, 42.78; H, 5.86; N, 2.63. Found: C, 42.60; H, 5.64; N, 2.56.

$$^{t}Bu_{3}P$$
-Au \swarrow

5-Bromothiazol-2-yl(tri-tert-butylphosphine)gold(I) 5ae

The general procedure was applied with [Au(P^tBu₃)Cl] (26 mg, 0.060 mmol), 2-bromothiazole (22 μ L, 0.24 mmol) and NaOH (10 mg, 0.24 mmol) in 1,4-dioxane at 50 °C for 15 h. Column chromatography (hexane/EtOAc 5:1 - 1:1 with 1% Et₃N) afforded the title product as a white solid (27 mg, 80%).

¹H NMR (400 MHz, CDCl₃) δ 7.39 (d, J = 1.6 Hz, 1H), 1.55 (d, J = 13.2 Hz, 27H). ¹³C NMR (100 MHz, CDCl₃) δ 168.9 (d, J = 111.2 Hz), 146.7 (d, J = 2.2 Hz), 136.7 (d, J = 5.9 Hz), 39.3 (d, J = 16.8 Hz), 32.6 (d, J = 4.4 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 92.2. IR (ATR) 3014, 1468, 1173, 994. m.p. 130-134 °C (decomposition). HRMS (EI) m/z calcd. C₁₅H₂₈AuBrNPS: [M]⁺ 561.0522; found: [M]⁺ 561.0522. Anal. Calcd for C₁₅H₂₈AuBrNPS: C, 32.04; H, 5.02; N, 2.49. Found: C, 31.86; H, 4.68; N, 2.46.

$\label{eq:logistical_state} 3-I odothiophen-2-yl (tri-tert-butylphosphine) gold (I) \ \textbf{5ag}$

The general procedure was applied with [Au(P^tBu₃)Cl] (43 mg, 0.10 mmol), 3-iodothiophene (41 μ L, 0.40 mmol) and NaOH (16 mg, 0.40 mmol) in 1,4-dioxane at 50 °C for 15 h. Removal of starting material *in vacuo* afforded the title product as a white solid (58 mg, 95%) in a 97:3 mixture with its C5 regioisomer.

¹H NMR (400 MHz, CDCl₃) δ 7.34 (dd, *J* = 4.7, 0.9 Hz, 1H), 7.31 (dd, *J* = 4.7, 2.0 Hz, 1H), 1.58 (d, *J* = 13.1 Hz, 27H). ¹³C NMR (100 MHz, CDCl₃) δ 177.1 (d, *J* = 112.7 Hz), 135.0 (d, *J* = 5.5 Hz), 128.8 (d, *J* = 3.1 Hz), 85.4, 39.3 (d, *J* = 16.2 Hz), 32.6 (d, *J* = 4.5). ³¹P NMR (162 MHz, CDCl₃) δ 91.5. IR (ATR) 2949, 1457, 1391, 1170, 841, 696. m.p. 164-168 °C. HRMS (EI) *m/z* calcd. C₁₆H₂₉AuIPS: [M]⁺ 608.0432; found: [M]⁺ 608.0422. Anal. Calcd for C₁₆H₂₉AuIPS: C, 31.59; H, 4.81. Found: C, 31.62; H, 4.55.

3-Bromothiophen-2-yl(tri-tert-butylphosphine)gold(I) 5ah

The general procedure was applied with $[Au(P^tBu_3)Cl]$ (43 mg, 0.10 mmol), 3-bromothiophene (37 μ L, 0.40 mmol) and NaOH (16 mg, 0.40 mmol) in 1,4-dioxane at 50 °C for 15 h. Removal of starting material *in vacuo* afforded the title product as a white solid (53 mg, 94%) in a 97:3 mixture with its C5 regioisomer.

¹H NMR (400 MHz, CDCl₃) δ 7.37 (dd, *J* = 4.8, 2.1 Hz 1H), 7.24 (dd, *J* = 4.8, 1.0 Hz, 1H), 1.57 (d, *J* = 13.1 Hz). ¹³C NMR (100 MHz, CDCl₃) δ 169.6 (d, *J* = 111.5 Hz), 130.2 (d, *J* = 5.2 Hz), 128.7 (d, *J* = 3.2 Hz), 115.9, 39.3 (d, *J* = 16.3 Hz, 27H), 32.6 (d, *J* = 4.5 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 91.8. IR (ATR) 2951, 1469, 1171, 844, 700. m.p. 182-184 °C. HRMS (EI) *m*/*z* calcd. C₁₆H₂₉AuBrPS: [M]⁺ 560.0571; found: [M]⁺ 560.0563. Anal. Calcd for C₁₆H₂₉AuBrPS: C, 34.24; H, 5.21. Found: C, 34.28; H, 4.99.

5-Bromothiophen-2-yl(tri-tert-butylphosphine)gold(I) 5ai

The general procedure was applied with [Au(P^tBu₃)Cl] (43 mg, 0.10 mmol), 2-bromothiophene (39 μ L, 0.40 mmol) and NaOH (16 mg, 0.40 mmol) in 1,4-dioxane at 50 °C for 24 h. Removal of starting material *in vacuo* afforded the title product as a white solid (52 mg, 92%) in a 99:1 mixture with its C4 regioisomer.

¹H NMR (400 MHz, CDCl₃) δ 7.25 (dd, J = 3.2, 1.3 Hz, 1H), 6.81 (app t, J = 3.2 Hz, 1H), 1.55 (d, J = 13.0 Hz, 27H). ¹³C NMR (100 MHz, CDCl₃) δ 176.6 (d, J = 114.1Hz), 133.3, 130.2 (d, J = 5.3 Hz). 112.8 (d, J = 5.0 Hz), 39.1 (d, J = 16.0 Hz), 32.6 (d, J = 4.5 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 92.0. IR (ATR) 2948, 1481, 1170 1391, 1170, 784. m.p. 72-75 °C. HRMS (EI) m/z calcd. C₁₆H₂₉AuBrPS: [M]⁺ 560.0571; found: [M]⁺ 560.0569. Anal. Calcd for C₁₆H₂₉AuBrPS: C, 34.24; H, 5.21. Found: C, 34.01; H, 4.84.

$$\bigvee_{N}^{\mathsf{CN}} \mathsf{AuP^tBu}_3$$

3-Cyano-1-methylindol-2-yl(tri-tert-butylphosphine)gold(I) 5aj

The general procedure was applied with $[Au(P^{t}Bu_{3})Cl]$ (43 mg, 0.10 mmol), 1-methylindole-3-carbonitrile (62 mg, 0.40 mmol) and NaOH (16 mg, 0.40 mmol) in 1,4-dioxane at 50 °C for 15 h. Column chromatography (hexane/EtOAc 50:50 - 30:70) afforded the title product as a white solid (49 mg, 88%).

¹H NMR (400 MHz, CD₃OD) δ 7.47-7.44 (m, 1H), 7.35-7.32 (m, 1H), 7.17-7.10 (m, 2H), 3.91 (s, 3H), 1.63 (d, *J* = 13.3 Hz, 27H). ¹³C NMR (100 MHz, CDCl₃) δ 191.6 (d, *J* = 110.0 Hz), 138.7 (d, *J* = 4.9 Hz), 129.7 (d, *J* = 3.8 Hz), 121.3, 121.0, 120.4, 118.5, 109.6, 92.8 (d, *J* = 2.8 Hz), 39.5 (d, *J* = 16.5 Hz), 36.3, 32.7 (d, *J* = 4.4 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 91.7. IR (ATR) 2947, 2200, 1470, 1173, 744. m.p. 198-199 °C. HRMS (EI) *m*/*z* calcd. C₂₂H₃₄AuN₂P: [M]⁺ 554.2118; found: [M]⁺ 554.2108. Anal. Calcd for C₂₂H₃₄AuN₂P: C, 47.66; H, 6.18; N, 5.05. Found: C, 46.88; H, 5.47; N, 4.95. Accurate elemental analysis was not obtained due to product decomposition.

2,3,5,6-Tetrafluoropyridin-4-yl(tri-tert-butylphosphine)gold(I) 5ak

The general procedure was applied with $[Au(P^tBu_3)Cl]$ (43 mg, 0.10 mmol), 2,3,5,6-tetrafluoropyridine (40 µL, 0.40 mmol) and NaOH (16 mg, 0.40 mmol) in 1,4-dioxane at 50 °C for 15 h. Column chromatography (hexane/EtOAc 100:0 - 95:5) afforded the title product as a white solid (42 mg, 77%).

¹H NMR (400 MHz, CDCl₃) δ 1.57 (d, *J* = 13.4 Hz, 27H). ¹³C NMR (151 MHz, CDCl₃) δ 163.7 (dt, *J* = 90.1, 56.3 Hz), 145.4 (dm, *J* = 237.0 Hz), 143.7 (dm, *J* = 246.51 Hz), 39.6 (d, *J* = 17.3 Hz), 32.6 (d, *J* = 4.0 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 91.6 (app. quint, *J* = 5.6 Hz). ¹⁹F NMR (367 MHz, CDCl₃) δ -96.97 (m),-122.57 (app t, *J* = 25.1 Hz). IR (ATR) 2955, 1621, 1421, 1202, 918. m.p. 147-150 °C. HRMS (EI) *m*/*z* calcd. C₁₇H₂₇AuF₄NP: [M]⁺ 549.1476; found: [M]⁺ 549.1473. Anal. Calcd for C₁₇H₂₇AuF₄NP: C, 37.17; H, 4.95; N, 2.55. Found: C, 37.10; H, 4.53; N, 2.37. Accurate elemental analysis was not obtained due to product decomposition.

3,5-Difluoropyridin-4-yl(tri-tert-butylphosphine)gold(I) 5al

The general procedure was applied with [Au(PⁱBu₃)Cl] (43 mg, 0.10 mmol), 3,5-difluoropyridine (37 μ L, 0.40 mmol) and NaOH (16 mg, 0.40 mmol) in 1,4-dioxane at 50 °C for 15 h. Column chromatography (hexane/EtOAc 100:0 - 60:40) afforded the title product as a white solid (46 mg, 90%).

¹H NMR (400 MHz, CDCl₃) δ 8.22 (d, *J* = 1.8 Hz, 2H), 1.58 (d, *J* = 13.2 Hz, 27H). ¹³C NMR (151 MHz, CDCl₃) δ 165.6 (dd, *J* = 240.8, 17.9 Hz), 152.0 (dt, *J* = 92.2, 56.1 Hz) 132.0 (app. dt, *J* = 33.3, 2.4 Hz), 39.5 (d, *J* = 16.4 Hz), 32.6 (d, *J* = 4.5 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 92.0 (t, *J* = 6.6 Hz). ¹⁹F NMR (367 MHz, CDCl₃) δ -104.33 (br. s). IR (ATR) 2951, 1528, 1402, 1222, 983, 872. m.p. 160-165 °C. HRMS (EI) *m*/*z* calcd. C₁₇H₂₉AuF₂NP: [M]⁺ 513.1664; found: [M]⁺ 513.1656. Anal. Calcd for C₁₇H₂₉AuF₂NP: C, 39.77; H, 5.69; N, 2.73. Found: C, 39.53; H, 5.28; N, 2.65. Accurate elemental analysis was not obtained due to product decomposition.

1,3,7-trimethyl-2,6-dioxo-2,3,6,7-tetrahydropurin-8-yl(tri-tert-butylphosphine)gold(I) 5am

The general procedure was applied with [Au(P⁴Bu₃)Cl] (43 mg, 0.10 mmol), caffeine (78 mg, 0.11 mmol) and NaOH (16 mg, 0.40 mmol) in 1,4-dioxane at 50 °C for 65 h. Washing with ice cold acetone (5 cm³) afforded the title product as a white solid (46 mg, 76%).

¹H NMR (400 MHz, CDCl₃) δ 4.08 (s, 3H), 3.63 (s, 3H), 3.40 (s, 3H), 1.58 (d, J = 13.2 Hz, 27H). ¹³C NMR (100 MHz, CDCl₃) δ 197.7 (d, J = 125.0 Hz), 155.6, 152.3, 150.4 (d, J = 7.4 Hz), 108.1 (d, J = 3.0 Hz), 39.4 (d, J = 16.7 Hz), 34.9, 32.6 (d, J = 4.3), 30.0, 27.8. ³¹P NMR (162 MHz, CDCl₃) δ 91.4. IR (ATR) 2928, 1693, 1646, 1312, 748. m.p. 254-258 °C. HRMS (EI) m/z calcd. C₂₀H₃₆AuN₄O₂P: [M]⁺ 592.2241; found: [M]⁺ 592.2218. Anal. Calcd for C₂₀H₃₆AuN₄O₂P: C, 40.54; H, 6.12; N, 9.46. Found: C, 39.18; H, 5.81; N, 9.05. Accurate elemental analysis was not obtained due to product decomposition.

Pentafluorophenyl(IPr)gold(I) 7b

The general procedure was applied with [Au(IPr)Cl] (37 mg, 0.060 mmol), pentafluorobenzene (27 μ L, 0.24 mmol) and NaOH (10 mg, 0.24 mmol) or NaO'Bu (23 mg, 0.24 mmmol) in DMF at 50 °C for 16 h. Washing with pentane (3 cm³) afforded the title product as a white solid (with NaOH 43 mg, 95%; with NaO'Bu 42 mg, 93%).

Spectroscopic data matched those previously reported.²

¹H NMR (400 MHz, C₆D₆): δ 7.19 (t, J = 7.8 Hz, 2H), 7.05 (d, J = 7.8 Hz, 4H), 6.30 (s, 2H), 2.60 (sept, J = 6.9 Hz, 4H), 1.50 (d, J = 6.9 Hz, 12H), 1.09 (d, J = 6.9 Hz, 12H). ¹³C NMR (151 MHz, C₆D₆): δ (3x C pentafluorobenzyl not observed), 192.8, 149.7 (dm, J = 219.3 Hz), 145.9, 134.5, 130.9, 124.3, 122.8, 29.1, 24.7, 23.9. ¹⁹F (376 MHz, C₆D₆): δ –116.2 – –116.3 (m), –161.1 (t, J = 20.0 Hz), – 163.7 – –163.9 (m). Anal. Calcd for C₃₃H₃₆AuF₅N₂: C, 52.66; H, 4.82; N, 3.72. Found: C, 48.92; H, 3.67; N, 3.19. Accurate elemental analysis was not obtained due to product decomposition.

Mechanistic Studies

Procedure for the titration of [Au(P^tBu₃)Cl] with NaOH

A mixture of [Au(P^tBu₃)Cl] (43.5 mg, 0.1 mmol) and NaOH (0.5 equiv., 0.67 equiv., 1.0 equiv. or 1.5 equiv.) was dissolved in DMF (0.5 mL). The reaction mixture was sonicated for 10 mins then stirred at 50 °C for 30 mins. The mixture was allowed to cool down to room temperature and analysed by ³¹P NMR using a CDCl₃ insert. When using 1.5 equiv. NaOH, only one peak was seen by ³¹P NMR

³¹P NMR (162 MHz, CDCl₃) δ 83.5.

Procedure for the titration of [Au(P^tBu₃)Cl] with NaO^tBu

A mixture of [Au(P^tBu₃)Cl] (43.5 mg, 0.1 mmol) and a solution of NaO^tBu (2 M in THF, 0.5 equiv., 0.67 equiv. or 1.0 equiv.) was dissolved in DMF (0.45 mL). The reaction mixture was then stirred at 50 °C for 30 mins. The mixture was allowed to cool down to room temperature and analysed by ³¹P NMR using a CDCl₃ insert. When using 1.0 equiv. NaO^tBu (2M in THF), only one peak was seen by ³¹P NMR

³¹P NMR (162 MHz, CDCl₃) δ 83.2.

Preparation of [Au(P^tBu₃)₃O]BF₄ 9'

In a vial, $[Au(P^tBu_3)Cl]$ (30 mg, 0.07 mmol) and finely powdered NaOH (11 mg, 0.28 mmol) were suspended in DMF (0.3 mL) and stirred for 30 min. Thereafter NaBF₄ (35 mg, 0.32 mmol) was added and the mixture was stirred for a further 30 min. The suspension was diluted with CH₂Cl₂ (5 mL), filtered through a plug of cotton wool, and the solvent was removed under vacuum. To remove residual salts, the resulting solid was re-dissolved in CH₂Cl₂ (5 mL) and filtered through a plug of cotton. Evaporation of the solvent afforded the product as a white solid (26 mg, 92%).

Spectroscopic data matched those previously reported.³

¹H NMR (400 MHz, CDCl₃) δ 1.52 (d, J = 13.7 Hz, 81H). ¹³C NMR (100 MHz, CDCl₃) δ 39.1 (d, J = 22.0 Hz); 32.1 (d, J = 3.7 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 83.5.

NMR Spectra

2,6-Dinitrophenyl(tri-tert-butylphosphine)gold(I) 3aa

¹H NMR (CDCl₃)

Pentafluorophenyl(tri-tert-butylphosphine)gold(I) 3ab

¹H NMR (CDCl₃)

2,3,5,6-Tetrafluorophenyl(tri-tert-butylphosphine)gold(I) 3ac

¹H NMR (CDCl₃)

2,4,6-Trifluorophenyl(tri-tert-butylphosphine)gold(I) 3ad

¹H NMR (CDCl₃)

 $2, 6\text{-}Difluorophenyl(tri-tert-butylphosphine)gold(I) \ \textbf{3ae}$

¹H NMR (CDCl₃)

 $2\mbox{-}Fluoro\mbox{-}6\mbox{-}nitrophenyl(tri\mbox{-}tert\mbox{-}butylphosphine)gold(I)\mbox{-}3af$

¹H NMR (CDCl₃)

 $\label{eq:alpha} 4-Bromo-2, 6-difluorophenyl (tri-tert-butylphosphine) gold (I) \ \textbf{3ag}$

¹H NMR (CDCl₃)

 $2, 6\text{-}Difluoro\text{-}4\text{-}iodoophenyl(tri\text{-}tert\text{-}butylphosphine)gold(I)} \textbf{ 3ah}$

¹H NMR (CDCl₃)

 $2,3,5,6\mbox{-}Tetrachlorophenyl (tri-tert-butylphosphine) gold (I) \ {\it 3ai}$

¹H NMR (CDCl₃)

2,4,6-Trichlorophenyl(tri-tert-butylphosphine)gold(I) 3aj

¹H NMR (CDCl₃)

2,4,6-Trifluorophenyl(triethylphosphine)gold(I) 3bd

2,6-Difluorophenyl(triethylphosphine)gold(I) 3be

¹H NMR (CDCl₃)

2,3,5,6-Tetrachlorophenyl(triethylphosphine)gold(I) 3bi

2,3,5,6-Tetrachlorophenyl(triphenylphosphine)gold(I) 3ci

¹H NMR (CDCl₃)

2,3,5,6-Tetrachlorophenyl(^tBuXPhos)gold(I) 3di

¹H NMR (CDCl₃)

2,4,6-Trichlorophenyl(triethylphosphine)gold(I) 3bj

2,6-Dichlorophenyl(triethylphosphine)gold(I) 3bk

¹H NMR (CDCl₃)

2,6-Dibromophenyl(triethylphosphine)gold(I) 3bo

Oxazol-2-yl(tri-tert-butylphosphine)gold(I) 5aa

¹H NMR (CDCl₃)

Thiazol-2-yl(tri-tert-butylphosphine)gold(I) 5ab

¹H NMR (CDCl₃)

¹³C NMR

Benzoxazol-2-yl(tri-tert-butylphosphine)gold(I) 5ac

¹³C NMR (CDCl₃)

Benzothiazol-2-yl(tri-tert-butylphosphine)gold(I) 5ad

¹H NMR (CDCl₃)

5-Bromothiazol-2-yl(tri-tert-butylphosphine)gold(I) 5ae

¹H NMR (CDCl₃)

3-Iodothiophen-2-yl(tri-tert-butylphosphine)gold(I) 5ag

3-Bromothiophen-2-yl(tri-tert-butylphosphine)gold(I) 5ah

¹³C NMR (CDCl₃)

5-Bromothiophen-2-yl(tri-tert-butylphosphine)gold(I) 5ai

3-Cyano-1-methylindol-2-yl(tri-tert-butylphosphine)gold(I) 5aj

¹H NMR (CD₃OD)

 $2,3,5,6\mbox{-}Tetrafluoropyridin-4\mbox{-}yl(tri\mbox{-}tert\mbox{-}butylphosphine)gold(I)\mbox{-}5ak$

¹H NMR (CDCl₃)

¹⁹F NMR (CDCl₃)

3,5-Difluoropyridin-4-yl(tri-tert-butylphosphine)gold(I) 5al

¹H NMR (CDCl₃)

¹⁹F NMR (CDCl₃)

 $(1,3,7-trimethyl-2,6-dioxo-2,3,6,7-tetrahydropurin-8-yl) gold (tri-tert-butylphosphine) gold (I) \ {\it 5am}$

¹³C NMR (CDCl₃)

Pentafluorophenyl(IPr)gold(I) 7b

¹H NMR (CDCl₃)

¹³C NMR (CDCl₃)

¹⁹F NMR (CDCl₃)

References

¹ P. Lu, T. C. Boorman, A. M. Z. Slawin and I. Larrosa, J. Am. Chem. Soc., 2010, 132, 5580-5581.

² S. Gaillard, A. M. Z. Slawin and S. P. Nolan, *Chem. Commun.*, 2010, 46, 2742-2744.

³ H. Schmidbaur, A. Kolb, E. Zeller, A. Schier and H. Beruda, *Anorg. Allg. Chem.*, 1993, **619**, 1575-1579.