SUPPORTING INFORMATION

Towards acid MOFs: catalytic performance, deactivation and stability of sulfonic acid functionalized architectures

Jana Juan-Alcañiz,*^{*a*} Robin Gielisse,^{*a*} Ana B. Lago,^{*b*} Enrique V. Ramos-Fernandez,^{*a*} Pablo Serra-Crespo,^{*a*} Thomas Devic,^{*b*} Nathalie Guillou,^{*b*} Christian Serre,^{*b*} Freek Kapteijn^{*a*} and Jorge Gascon*^{*a*}

^aCatalysis Engineering, Chemical Engineering Department, Delft University of Technology, Julianalaan 136, 2628 BL Delft, The Netherlands

^bInstitut Lavoisier, UMR 8180 CNRS Université de Versailles St Quentin en Yvelines, 45 Avenue des Etats-Unis, 78035 Versailles, France

*j.juanalcaniz@tudelft.nl, *j.gascon@tudelft.nl

Figure S1. CoKα Powder X-Ray diffraction patterns of HSO₃-MIL-101(Cr) samples synthesized with HCl or HF described in the experimental section.

Figure S2. Nitrogen adsorption isotherms at 77 K of HSO₃-MIL-101(Cr) samples synthesized with HCl (*grey*) or HF (*black*) as described in the experimental section.

Figure S3. SEM images of HSO₃-MIL-101(Cr) samples.

(a) HCl (*left*)

(b) HF (*right*)

Figure S4. Thermo-gravimetric analysis of HCl (*grey*) or HF (*black*) synthesized HSO₃-MIL-101(Cr) samples.

Figure S6. SEM images of HSO₃-MIL-101(Cr) samples before (*left*) and after (*right*) three reaction cycles.

(b) HF

Figure S8. XRD and Nitrogen adsorption isotherms (77 K) of 50%HSO₃-MIL-101(Cr) (*grey*) compared with full HSO₃-MIL-101(Cr) (*black*).
(a) XRD
(b) Nitrogen adsorption isotherms

Figure S9. XPS survey spectra of HSO_3 -MIL-101(Cr) full sulfonic linker and mixture of 50% with TBD. Zoom in at the F 1*s* and S 2*p* core-levels.

Figure S10. Structure pattern profile refinement of HSO₃-ZrMOF (Rwp = 0.0495). Data collected on ID31 (ESRF), λ = 0.79989 Å. Cubic setting, space group *Im-3m*, *a* = 41.5331(2) Å.

Figure S11. Partial structural model of the HSO3-Zr MOF: location of the Zr6 clusters (yellow balls, black bonds) within the unit-cell (in grey).

Figure S12. DRIFT spectra of HSO₃-ZrMOF before (*black*) and after (*grey*) use in the esterification reaction.

Table S1. Elemental analysis of chromium and sodium measured by ICP-OES from the different HSO₃-MIL-101(Cr) samples.

	Cr (wt.%)	Na (wt.%)	Na ⁺ /SO3 ⁻
HSO ₃ -MIL-101(Cr) _{HF}	15.1	2.75	0.41
HSO ₃ -MIL-101(Cr) _{HCI}	7.24	1.28	0.30