Supplementary Information

The role of reducing agent in Perylene tetracarboxylic acid coating on graphene sheets enhances Pd nanoparticles-electrocalytic ethanol oxidation

Shuwen Li, Honglei Yang, Zhengping Dong, Shujing Guo, Jiahui Zhao, Galian Gou, Ren Ren , Jingwei, Huang, Jun Jin* and Jiantai Ma*

State Key Laboratory of Applied Organic Chemistry and College of Chemistry, Gansu Provincial Engineering Laboratory for chemical catalysis and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China

^{*} Corresponding authors. Tel./fax: +86 931 8912577.

E-mail addresses: jinjun@lzu.edu.cn, majiantai@lzu.edu.cn.

Inductive coupled plasma atomic emission spectrometer (ICP-AES) analyses were conducted with Perkin Elmer (Optima-4300DV).

Table S1 Pd loadings measured by ICP.

Catalysts	Pd (wt%)	
Pd/PTCA-GS(NaBH ₄)	14.12	
Pd/PTCA-GS(EG)	12.50	
Pd/PTCA-GS(H ₂)	13.92	
Pd/GS(NaBH ₄)	13.55	
Pd/GS(EG)	10.40	
$Pd/GS(H_2)$	13.32	
Pd/ rGO(NaBH ₄)	13.24	
Pd/C	10.00	

Fig. S1 UV–vis absorption spectra of (a) PTCA (0.01 mg mL⁻¹), (b) GS (0.02 mg mL⁻¹) and (c) PTCA-GS (0.02 mg mL⁻¹).

To further investigate the PTCA functionalized on the surface of GS, the UV–vis spectra of PTCA, GS and PTCA-GS in water were measured and were displayed in Fig.S1. UV–Vis absorption spectra were recorded using a T6 UV–vis spectrometer. Three characteristic peaks around 263 nm, 438 nm and 466 nm were clearly observed in the spectra of PTCA, which were attributed to the PTCA molecules.^{1, 2} The characteristic absorption of GS appeared at 276 nm corresponding to the restored π -conjugation network.³ Compared with GS, the PTCA-GS revealed obvious absorption peaks at 265 nm, 439 nm and 468 nm. In particular, there was a slight red shift of 2 nm compared with the PTCA, which were generated by the π - π stacking interaction between PTCA unit and GS.⁴ The results of UV–Vis spectra implied that the PTCA has been successfully immobilized on the surface of GS by the π - π stacking.

Fig. S2 (A) CVs of Pd/rGO(NaBH₄) at a scan rate of 50 mV s⁻¹ and (B) Chronoamperometric curves of Pd/rGO(NaBH₄) for ethanol electrooxidation in nitrogen-saturated 1 M KOH + 1 M

CH₃CH₂OH solution

As a comparison, the Pd NPs loading on the chemical reduced graphene (Pd/rGO(NaBH₄)) was prepared and the performance of Pd/rGO(NaBH₄) has been carried out (Fig. S2). The preparation process of Pd/rGO(NaBH₄) was as following. The GO which was synthesized by Hummer's method⁵ (20 mg) was dissolved in H_2O (20 mL) with ultrasonic treatment to form a uniform suspension. Then, PdCl₂ solution (0.01 M, 3.4 mL) was added into the suspension under stirring and the mixture was stirred for 30 min in room temperature. Subsequently, the NaBH₄ solution (5.0 mL 0.1 M) was delivered by drops into the above suspension under continuous stirring. After reacting for 4 h at room temperature, the black solid material was separated by centrifugation, washed repeatedly with water and ethanol several times, and dried in a vacuum at 60 °C for 12 h. As shown in Fig.S2, the I_f and I_s (588.0 mAmg⁻¹ and 123.3 mAmg⁻¹) for Pd/rGO(NaBH₄) were lower than that of Pd/GS(NaBH₄). It was due to the structural damage of graphene which adversely affects the electrical, mechanical, and stabile properties of the material because of the transformation of carbon atoms from a planar sp²-hybridized geometry to a distorted sp³-hybridized geometry.⁶ In addition, the oxygen existing in the GO also could reduce the conductivity for

graphene. However, the E_s (-0.692 V) for the Pd/rGO(NaBH₄) was more negative than those on the Pd/PTCA-GS(NaBH₄) owing to the oxygen-contained groups improve the kinetics of the ethanol oxidation. All the results indicated the Pd/PTCA-GS(NaBH₄, EG and H₂) displayed better kinetics, higher electrocatalytic activity, better tolerance and electrochemical stability than the Pd/rGO(NaBH₄).

References

- 1. C. Backes, C. D. Schmidt, K. Rosenlehner, F. Hauke, J. N. Coleman and A. Hirsch, *Adv. Mater.*, 2010, **22**, 788-802.
- C. Backes, C. D. Schmidt, F. Hauke, C. Böttcher and A. Hirsch, J. Am. Chem. Soc., 2009, 131, 2172-2184.
- 3. D. Li, M. B. Muller, S. Gilje, R. B. Kaner and G. G. Wallace, *Nat. Nano.*, 2008, **3**, 101-105.
- 4. Y. Hu, K. Wang, Q. Zhang, F. Li, T. Wu and L. Niu, *Biomaterials*, 2012, **33**, 1097-1106.
- 5. W. S. Hummers and R. E. Offeman, J. Am. Chem. Soc., 1958, 80, 1339-1339.
- Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun'Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari and J. N. Coleman, *Nat. Nano.*, 2008, 3, 563-568.