Electronic Supplementary Information (ESI)

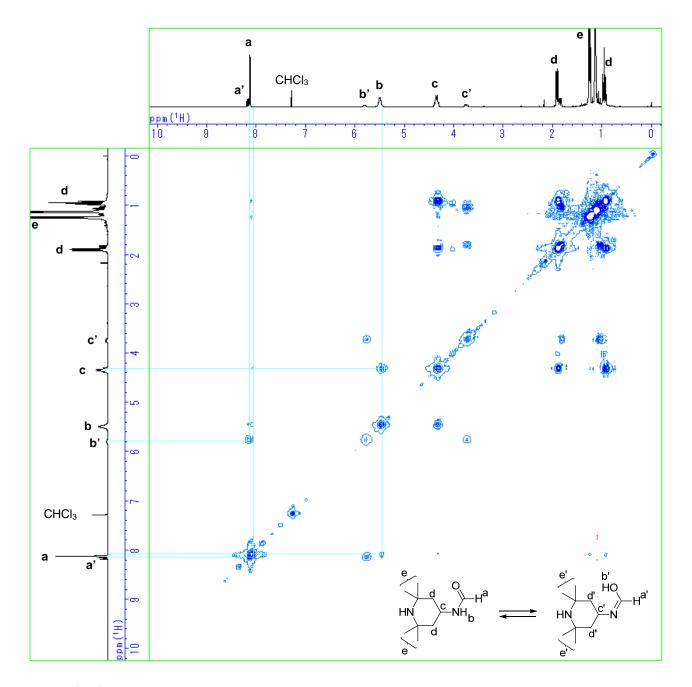
Copper-Diphosphine Complex Catalysts for *N*-Formylation of Amines under 1 atm of Carbon Dioxide with Polymethylhydrosiloxane

Ken Motokura, Naoki Takahashi, Daiki Kashiwame, Sho Yamaguchi, Akimitsu Miyaji and Toshihide Baba*

Department of Environmental Chemistry and Engineering, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8502, Japan

Experimental procedures

Proton (¹H) and carbon (¹³C) nuclear magnetic resonance (NMR) spectra were recorded in CDCl₃ with a Bruker AVANCE 400 spectrometer operating at 400 and 100.61 MHz, respectively. A Shimadzu QP5000 instrument equipped with a DB-1 column was used for GC-MS analysis.


Cu(OAc)₂·H₂O (Cu content >99.99%) was purchased from Aldrich Inc. Polymethylhydrosiloxane (PMHS) was purchased from WAKO Pure Chemicals (FW: *ca.* 1900). Unless otherwise noted, all other materials were purchased from Wako Pure Chemicals, Tokyo Kasei Co., Kanto Kagaku Co., or Aldrich Inc. *p*-Xylene or mesitylene was used as an internal standard.

Typical Procedure for Formylation of Amines under CO₂ with PMHS

Into a glass reactor equipped with a CO₂ balloon were placed Cu(OAc)₂·H₂O (Cu: 1.0×10⁻³ mmol), 1,2-bis(diisopropylphosphino)benzene (**1a**, P: 3.0×10⁻³ mmol), piperidine (1.4 mmol), PMHS (0.211 g, Si-H: 3.2 mmol), and 1,4-dioxane (5.0 mL). The resulting mixture was stirred vigorously at 80 °C for 5 h. ¹H NMR analysis of the reaction mixture showed a 98% yield of *N*-formylpiperidine. Formamide products were identified by comparison with reported ¹H NMR and GC-MS data. Yield and conversion were determined using a CDCl₃ solution of the reaction mixture by the internal standard technique. Mesitylene or 1,3,5-triisopropylbenzene was used as an internal standard. The products were confirmed by the comparison of their GC-MS spectra, and/or ¹H and ¹³C NMR spectra with those of authentic data.

Regioselective Formylation (Table 2, entry 14)

Into a glass reactor equipped with a CO₂ balloon were placed Cu(OAc)₂·H₂O (Cu: 1.0×10⁻³ mmol), 1,2-bis(diisopropylphosphino)benzene (**1a**, P: 1.0×10⁻² mmol), 2,2,6,6-tetramethylpiperidin-4-amine (1.4 mmol), PMHS (0.211 g, Si-H: 3.2 mmol), and 1,4-dioxane (5.0 mL). The resulting mixture was stirred vigorously at 80 °C for 24 h. ¹H NMR analysis using a CDCl₃ solution of the reaction mixture showed a 63% yield of regioselective formylated product. Other forymalated products were not detected in either ¹H NMR or GC-MS. The resulting reaction mixture was purified over a column of silica gel (C200) and eluted (ethyl acetate --> acetone) to give the isolated product. The product was identified by MS, ¹H NMR, ¹³C NMR, and ¹H-¹H COSY NMR spectroscopy (Figure S1).

Figure S1 ¹H-¹H COSY analysis of the regioselective formylation product.

Table S1 List of Catalysts for Formylation of Amines with CO₂ and Hydrosilanes

Amine	Catalyst	CO ₂ (atm)	Hydrosilane	Time / temp	TON	Ref
Piperidine	Cu-1b	1	PMHS	$23~h/80~^{\circ}C$	11700	This
Morpholine	Cu- 1b	1	PMHS	$22~h/80~^{\rm o}{ m C}$	9000	Work
Piperidine	TBD	1	$PhSiH_3$	$24 h / 100 ^{\circ}C$	20	[S1]
Morpholine	NHC	1	PhSiH ₃ , PMHS	1 h / rt	20 (TOF: 160 h ⁻¹)	[S2]
Piperidine	Rh ₂ (OAc) ₄	1	PhSiMe ₂ H	2 h / 50 °C (hydrosilylation), 1 h / 50 °C (amide formation)	200	[S3]

Table S2 List of Catalysts for Formylation of Amines other than Dimethylamine with CO₂ and H₂

Amine	Catalyst	CO ₂ (atm)	H ₂ (atm)	Time / Temp	TON	Ref
Piperidine	Na[HRu ₃ (CO) ₁₁]	60	60	24 h / 140 °C	850	[S4]
$NH(C_2H_5)_2$	Ru-silica-hybrid aerogel	180 (total)	180 (total)	-	(TOF: 18400 h ⁻¹)	[S5]
$NH(n-C_3H_7)_2$	$RuCl_2(dppe)_2$	276 (total)	55	$5~h/80~^{\rm o}C$	110	[S6]
Piperidine	$RuCl_2(dppe)_2$	180 (total)	88	$3 h / 100 ^{\rm o}{\rm C}$	117780	[S7]
Morpholine	$RuCl_2(dppe)_2$	180 (total)	88	$3 h / 100 ^{\rm o}{\rm C}$	205200	
Morpholine	RuCl ₂ (bspe) ₂ /SiO ₂	100 g (200 bar total)	80	20 h / 100 °C	3416	[S8]
Piperidine	Fe(BF ₄) ₂ / tetraphos	30	60	20 h / 100 °C	373	[S9]
Piperidine	$Co(BF_4)_2 \cdot 6H_2O$	30	60	$20 \text{ h} / 100 ^{\circ}\text{C}$	1254	[S10]

References

- [S1] C. Das Neves Gomes, O. Jacquet, C. Villiers, P. Thuéry, M. Ephritikhine, T. Cantat, *Angew. Chem. Int. Ed.* 2012, **51**, 187.
- [S2] O. Jacquet, C. Das Neves Gomes, M. Ephritikhine, T. Cantat, J. Am. Chem. Soc. 2012, 134, 2934.
- [S3] S. Itagaki, K. Yamaguchi, N. Mizuno, J. Mol. Catal. A Chem. 2013, 366, 347.
- [S4] G. Süss-Fink, M. Langenbahn, T. Jenke, J. Organomett. Chem. 1989, 368, 103.
- [S5] L. Schmid, M. Rohr, A. Baiker, Chem. Commun. 1999, 2303.
- [S6] F. Liu, M. B. Abrams, R. T. Baker, W. Tumas, Chem. Commun. 2001,433.
- [S7] L. Schmid, A. Canonica, A. Baiker, Appl. Catal. A General 2003, 255, 23.
- [S8] M. Rohr, M. Günther, F. Jutz, J.-D. Grunwaldt, H. Emerich, W. van Beek, A. Baiker, *Appl. Cata. A General* 2005, **296**, 238.
- [S9] C. Fedesel, A. Boddien, R. Jackstell, R. Jennerjahn, P. J. Dyson, R. Scopelliti, G. Laurenczy, M. Beller, *Angew. Chem. Int. Ed.* 2010, **49**, 9777.
- [S10] C. Federsel, C. Ziebart, R. Jackstell, W. Baumann, M. Beller, Chem. Eur. J. 2012, 18, 72.