# Supporting Information

# Mild, Selective and Switchable Transfer Reduction of Nitroarenes Catalyzed by Supported Gold Nanoparticles

Xiang Liu, Sen Ye, Hai-Qian Li, Yong-Mei Liu, Yong Cao,\* and Kang-Nian Fan

Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China.

| $\begin{array}{r} \hline O \\ Ph-NO_2 & \begin{array}{r} cat., 1atm N_2 & Ph-tN=N-Ph + Ph-N=N-Ph + Ph-NH_2 \\ 1a & \begin{array}{r} 2-propanol \end{array} \end{array} $ 2a 3a 4a |                                   |                          |                       |            |            |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--------------------------|-----------------------|------------|------------|--|--|--|
|                                                                                                                                                                                   | Catalyst                          | Conv. (%) <sup>b</sup> - | Sel. (%) <sup>b</sup> |            |            |  |  |  |
| Entry                                                                                                                                                                             |                                   |                          | 2a                    | <b>3</b> a | <b>4</b> a |  |  |  |
| 1                                                                                                                                                                                 | Au/meso-CeO <sub>2</sub>          | 100                      | >99                   | <1         | -          |  |  |  |
| 2                                                                                                                                                                                 | Au/CeO <sub>2</sub> -50           | 81                       | 89                    | 7          | 2          |  |  |  |
| 3                                                                                                                                                                                 | Au/ ZrO <sub>2</sub>              | 26                       | 74                    | 25         | 1          |  |  |  |
| 4                                                                                                                                                                                 | Au/TiO <sub>2</sub>               | 60                       | 65                    | 34         | <1         |  |  |  |
| 5                                                                                                                                                                                 | Au/Fe <sub>2</sub> O <sub>3</sub> | 21                       | 41                    | 59         | -          |  |  |  |
| 6                                                                                                                                                                                 | Au/Al <sub>2</sub> O <sub>3</sub> | 36                       | 53                    | 46         | 1          |  |  |  |
| 7                                                                                                                                                                                 | Au/ZnO                            | 30                       | 58                    | 41         | <1         |  |  |  |
| 8                                                                                                                                                                                 | Pt/meso-CeO <sub>2</sub>          | 20                       | 46                    | 41         | 12         |  |  |  |
| 9                                                                                                                                                                                 | meso-CeO <sub>2</sub>             | -                        | -                     | -          | -          |  |  |  |

A. Table S1. Transfer reduction of nitrobenzene using different catalysts.<sup>a</sup>

<sup>*a*</sup> Reaction conditions: 1 mmol nitrobenzene, catalyst (metal: 1.0 mol%), 0.5 mmol KOH, 5.0 mL 2-propanol, 1.0 mL water, 1 atm N<sub>2</sub>, 30 °C, 5 h. <sup>*b*</sup> Conversion and selectivity based on **1a** consumption. Determined by GC using *n*-dodecane as the internal standard.

| Ph_l<br><b>1a</b>                                                                               | NO <sub>2</sub> cat., 1atm N <sub>2</sub> | -O<br>Ph_tŃ=<br>2a | :N_Ph + Ph<br>a | –N=N−Ph<br><b>3a</b> | + Ph_l<br><b>4a</b> | NH <sub>2</sub> |  |
|-------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------|-----------------|----------------------|---------------------|-----------------|--|
| Entry                                                                                           | Base(equiv.)                              | t/h                | Conv.           | Sel. $(\%)^b$        |                     |                 |  |
|                                                                                                 |                                           |                    | $(\%)^b$        | 2a                   | 3a                  | <b>4</b> a      |  |
| 1                                                                                               | -                                         | 8                  | 86              | -                    | 4                   | 96              |  |
| 2                                                                                               | NaOH (0.5)                                | 8                  | 93              | 69                   | 22                  | 10              |  |
| 3                                                                                               | Na <sub>2</sub> CO <sub>3</sub> (0.5)     | 8                  | 45              | 40                   | 23                  | 37              |  |
| 4                                                                                               | $Cs_2CO_3(0.5)$                           | 8                  | 89              | 11                   | 81                  | 8               |  |
| 5                                                                                               | KOH(0.25)                                 | 8                  | 100             | 81                   | 15                  | 4               |  |
| 6                                                                                               | KOH(0.5)                                  | 5                  | 100             | >99                  | <1                  | -               |  |
| 7                                                                                               | KOH(1.0)                                  | 5                  | 100             | 84                   | 14                  | 2               |  |
| 8                                                                                               | KOH(2.0)                                  | 5                  | 100             | 69                   | 29                  | 2               |  |
| <sup><i>a</i></sup> Reaction conditions: 1 mmol nitrobenzene, Au/meso-CeO <sub>2</sub> (Au: 1.0 |                                           |                    |                 |                      |                     |                 |  |
| mol%), 5.0 mL 2-propanol, 1.0 mL water, 1 atm N <sub>2</sub> , 30 °C. <sup>b</sup> Conver-      |                                           |                    |                 |                      |                     |                 |  |
| sion and selectivity based on 1a consumption. Determined by GC                                  |                                           |                    |                 |                      |                     |                 |  |
| using <i>n</i> -dodecane as the internal standard.                                              |                                           |                    |                 |                      |                     |                 |  |

**B.** *Table S2.* Transfer reduction of nitrobenzene in the presence of different bases.<sup>*a*</sup>

C. Figure S1. Nitrogen adsorption-desorption isotherms of the meso-CeO2.



### D. TEM images









3



*Figure S2.* TEM images and gold particle size distribution of (a) 0.49 wt% Au/CeO<sub>2</sub>-50; (b) 0.8 wt% Au/ZrO<sub>2</sub>, (c) 4.50 wt% Au/Fe<sub>2</sub>O<sub>3</sub>; (d) 1.0 wt% Au/TiO<sub>2</sub>; (e) 1.0 wt% Au/Al<sub>2</sub>O<sub>3</sub>; (f) 1.0 wt% Au/ZnO.

| Samula                         | $S_{BET} (m^2/g)$ | Crystallite           | Crystallite           | Surface               |
|--------------------------------|-------------------|-----------------------|-----------------------|-----------------------|
| Sample                         |                   | size(nm) <sup>a</sup> | size(nm) <sup>b</sup> | $n_{Au}/n_{Ce}^{\ c}$ |
| meso-CeO <sub>2</sub>          | 150               | 7.3                   | n.m. <sup>d</sup>     | -                     |
| Fresh Au/meso-CeO <sub>2</sub> | 148               | 7.5                   | 4.8                   | 0.015                 |
| Used Au/meso-CeO <sub>2</sub>  | 147               | 7.5                   | 4.8                   | 0.014                 |

E. Table S3. Catalyst characterazition by XRD, TEM, XPS, and nitrogen adsorption.

<sup>*a*</sup> Determined by XRD. <sup>*b*</sup> Determined by HRTEM. <sup>*c*</sup> The XPS lines used to calculate the atomic ratios were Au (4f<sub>7/2</sub>) and Ce (3d<sub>5/2</sub>). Surface  $n_{Au}/n_{Ce} = (A_{Au}/S_{Au})/(A_{Ce}/S_{Ce})$ , A is peak area, atomic sensitivity factors S were taken from reference [S1]. <sup>*d*</sup> n.m. means not measured. Note that the surface Au/Ce atomic ratio unambiguously demonstrate that the gold dispersion in the Au/meso-CeO<sub>2</sub>.

#### F. Cross-coupling reaction between nitrobenzene and 4-chloronitrobenzene



**Scheme S1.** Transfer reductive cross-coupling between equimolar amount of nitrobenzene and 4-chloronitrobenzene. The yield was determined by GC. The yield of **3a** and **3ab** was calculated based on **1a**, and the yield of **3b** was calculated based on **1b**. Note that aniline (5 % yield based on **1a**) and azoxybenzene (1 % yield based on **1a**) were also detected as by-products in the resultant mixture.

# G. Characterization of Products



(**Table 3, entry 1**). <sup>[S2] 1</sup>H-NMR (CDCl<sub>3</sub>, 500 MHz): δ 7.93-7.91 (t, 4H), 7.54-7.46 (m, 6H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz): δ 152.7, 131.0, 129.1, 122.8.



(**Table 3, entry 2).**<sup>[S2] 1</sup>H-NMR (CDCl<sub>3</sub>, 500 MHz): δ 7.82- 7.80 (d, 4H), 7.31-7.29 (d, 4H), 2.43 (s, 6H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz): δ 150.9, 141.2, 129.7, 122.7, 21.5.



(**Table 3, entry 3).** <sup>[S2] 1</sup>H-NMR (CDCl<sub>3</sub>, 500 MHz): δ 7.72 (s, 4H), 7.42-7.38 (t, 2H), 7.29-7.28 (d, 2H), 2.46 (s, 6 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz): δ 152.8, 139.0, 131.7, 128.9, 122.9, 120.4, 21.4.



(**Table 3, entry 4**).<sup>[S2] 1</sup>H-NMR (CDCl<sub>3</sub>, 500 MHz): δ 7.87-7.86 (d, 4H), 7.50-7.48 (d, 4H).<sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz): δ 150.9, 137.3, 129.4, 124.2.



C<sup>I</sup>(**Table 3, entry 5).** <sup>[S3]</sup> <sup>1</sup>H-NMR (CDCl<sub>3</sub>, 500 MHz): δ7.90-7.85 (t, 2 H), 7.84-7.83 (t, 2 H), 7.50-7.47 (m, 4 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz): δ 153.2, 139.9, 131.2, 130.2, 122.6, 121.9.



Br (Table 3, entry 6).<sup>[S2] 1</sup>H-NMR (CDCl<sub>3</sub>, 500 MHz): δ 7.80-7.79 (d, 4 H), 7.66-7.64 (d, 4 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz): δ 151.2, 139.9, 132.4, 125.7, 124.4.



(**Table 3, entry 7).**<sup>[S4] 1</sup>H-NMR (CDCl<sub>3</sub>, 500 MHz): δ 7.92- 7.90 (m, 4 H), 7.24-7.16 (m, 4 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz): δ 165.4, 163.4, 149.0, 124.9, 124.8, 116.2, 116.0.



(Table 3, entry 1).<sup>[S3] 1</sup>H-NMR (CDCl<sub>3</sub>, 500 MHz): δ 8.04-8.03 (d, 4H), 7.86-7.84 (d, 4H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz): δ 154.0, 133.4, 123.7, 118.1, 115.2.

(**Table 3, entry 1**).<sup>[S2] 1</sup>H-NMR (CDCl<sub>3</sub>, 500 MHz): δ 8.14-8.12 (d, 4 H), 8.02-8.01 (d, 4 H), 2.68 (s, 6 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz): δ197.3, 154.9, 139.0, 129.4, 123.2, 26.9.

(Table 3, entry 1).<sup>[S2]</sup> <sup>1</sup>H-NMR (CDCl<sub>3</sub>, 500 MHz): δ 8.22-8.20 (d, 4H), 8.00-7.98 (d, 4H), 3.97 (s, 6H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz): δ 166.4, 155.0, 132.5, 130.7, 52.4.



(Scheme 1).<sup>[S4] 1</sup>H-NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta$  7.93-7.87 (m, 4 H), 7.53-7.48 (m, 5 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz):  $\delta$  152.5, 151.0, 136.9, 131.3, 129.3, 129.1, 124.1, 122.9.



(Scheme 1).<sup>[S5]</sup> <sup>1</sup>H-NMR (CDCl<sub>3</sub>, 500 MHz): δ 8.12-8.10 (d, 2H), 7.98-7.94 (m, 4H), 7.54-7.52 (d, 3H), 2.67 (s, 3H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz): δ 197.4, 152.6, 131.8, 131.4, 129.4, 129.2, 123.2, 122.9, 29.7.



(Scheme 1).<sup>[S4] 1</sup>H-NMR (CDCl<sub>3</sub>, 500 MHz): δ 7.87-7.85 (d, 2H), 7.72-7.71 (d, 2H), 7.49-7.47 (d, 2H), 7.42-7.39 (t, 1H), 7.31-7.29 (d, 1H), 2.46 (s, 3H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz): 152.6, 151.1, 139.1, 136.8, 132.1, 129.3, 129.0, 124.1, 123.0, 120.5, 21.4.



(**Table 4, entry 1**).<sup>[S2]</sup> <sup>1</sup>H-NMR (CDCl<sub>3</sub>, 500 MHz): δ 8.32-8.30 (m, 2H), 8.17-8.16(d, 2H), 7.58-7.26 (m, 6H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz): δ148.4, 144.1, 131.6, 129.6, 128.8, 128.7, 125.5, 122.4.



(**Table 4, entry 2**).<sup>[S2] 1</sup>H-NMR (CDCl<sub>3</sub>, 500 MHz): δ 8.19-8.17 (d, 2H), 8.12-8.10 (d, 2H), 7.29-7.25 (t, 4H), 2.44 (s, 3H), 2.41 (s, 3H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz): δ 146.3, 141.9, 140.0, 129.3, 125.7, 122.2, 21.5, 21.3.



(**Table 4, entry 3).**<sup>[S2]</sup> <sup>1</sup>H-NMR (CDCl<sub>3</sub>, 500 MHz): δ 8.10-8.07 (t, 2H), 7.98-7.96 (d, 2H), 7.40-7.35 (m, 3H), 7.21-7.20 (d, 1H), 2.47 (s, 3H) 2.43 (s, 3H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz): δ 148.4, 144.1, 139.0, 138.4, 132.3, 130.3, 128.6, 128.5, 126.0, 122.8, 122.5, 119.5, 21.5, 21.4.



(**Table 4, entry 4).**<sup>[S2] 1</sup>H-NMR (CDCl<sub>3</sub>, 500 MHz): δ 8.26-8.24 (d, 2H), 8.16-8.15 (d, 2H), 7.49-7.44 (m, 4H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz): δ 146.6, 144.3, 138.1, 135.3, 129.0, 129.0, 127.1, 123.7.



CI (Table 4, entry 5).<sup>[S3]</sup> <sup>1</sup>H-NMR (CDCl<sub>3</sub>, 500 MHz): δ 8.32-8.20 (m, 3H), 8.01-8.00 (d, 1H), 7.57-7.56 (d, 1H), 7.50-7.39 (m, 4 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz): δ 144.5, 134.9, 134.5, 132.0, 129.9, 129.9, 129.7, 125.4, 124.0, 122.9, 120.6.



(Table 4, entry 6).<sup>[S2] 1</sup>H-NMR (CDCl<sub>3</sub>, 500 MHz): δ 8.19-8.17 (d, 2H), 8.09-8.07 (d, 2H), 7.66-7.60 (m, 4H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz): δ 147.1, 142.7, 132.1, 131.9, 127.2, 126.5, 123.9, 123.6.



(**Table 4, entry 7).**<sup>[S6] 1</sup>H-NMR (CDCl<sub>3</sub>, 500 MHz): δ 8.34-8.31 (m, 2H), 8.27-8.24 (m, 2H), 7.20-7.15 (m, 4H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz): δ 165.5, 163.6, 163.5, 161.6, 140.3, 128.0, 127.9, 124.6, 124.5, 115.8, 115.8, 115.6, 115.5.



(**Table 4, entry 1**).<sup>[S2] 1</sup>H-NMR (CDCl<sub>3</sub>, 500 MHz): δ 8.47-8.45 (d, 2H), 8.24-8.22 (d, 2H), 7.88-7.86 (d, 2H), 7.80-8.79(d, 2H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz): δ 146.3, 139.9, 139.8, 133.1, 132.8, 126.0, 123.4, 118.2, 117.3, 116.2, 113.2.



(Table 4, entry 1).<sup>[S2]</sup> <sup>1</sup>H-NMR (CDCl<sub>3</sub>, 500 MHz): 8.41-8.40 (d, 2H), 8.22-8.20 (d, 2H), 8.11-8.07 (m, 4H), 2.68 (s, 3H), 2.65 (s, 3H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz): δ 197.0, 196.7, 150.8, 147.0, 139.8, 139.6, 137.4, 129.0, 129.0, 125.5, 122.8, 26.9, 26.7.



(Table 4, entry 1).<sup>[S2]</sup> <sup>1</sup>H-NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta$ 8.40-8.38 (d, 2H), 8.21-8.17 (m, 6H), 3.98 (s, 3H), 3.95 (s, 3H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz):  $\delta$ 166.2, 165.8, 150.9, 147.0, 133.3, 130.7, 130.4, 130.2, 125.3, 122.6, 52.6, 52.3.

## References

[S1] J. H. Scofield, J. Electron. Spectrosc. Relat. Phenom., 1976, 8, 129.

- [S2] N. Sakai, K. Fujii, S. Nabeshima, R. Ikeda, T. Konakahara, Chem. Commun., 2010, 46, 3173.
- [S3] R. Thorwirth, F. Bernhardt, A. Stolle, B. Pndruschka, J. Asghri, Chem. Eur. J., 2010, 16, 13242.
- [S4] S. Cai, H. Rong, X. Yu, X. Liu, D. Wang, W. He, Y. Li, ACS Catal., 2013, 3, 486.
- [S5] L. Hu, X. Cao, L. Chen, J. Zheng, J. Lu, X. Sun, H. Gu, Chem. Commun., 2012, 48, 3445.
- [S6] S. P. Annen, H. Grützmacher, Dalton Trans., 2012, 41, 14137.













































