Cu-grafted mesoporous organic polymer: A new recyclable nanocatalyst for multi-component, N-arylation and S-arylation reactions

Noor Salam,^a Sudipta K. Kundu,^b Anupam Singha Roy,^a Paramita Mondal,^a

Susmita Roy,^a Asim Bhaumik^{b,*} and S. M. Islam^{a,*}

^aDepartment of Chemistry, University of Kalyani, Kalyani, Nadia, 741235, W.B., India. ^bDepartment of Material Science, Indian Association for the Cultivation of Science, Kolkata - 700032, India

Figure S1. HR TEM image of Cu-MPTA-1 catalyst after the catalytic reaction.

Spectral data of the isolated product:

N-Arylation of imidazoles with different aryl:

1-phenyl-1H-imidazole¹

¹H NMR (400MHz, CDCl₃): δ= 7.84 (s, 1H), 7.47-7.50 (m, 2H), 7.37-7.41 (m, 3H), 7.29 (s,

1H), 7.22 (s, 1H)

1-(4-Methylphenyl)-1H-imidazole¹

¹H NMR (400MHz, CDCl₃): δ= 7.76 (s, 1H), 7.25(m, 4H), 7.17 (bs, 1H), 7.17 (bs, 1H), 2.39 (s, 3H)

1-(4-Methoxyphenyl)-1H-imidazole²

¹H NMR (400MHz, CDCl₃): δ= 7.72 (s, 1H), 7.28 (d, 2H), 7.15 (bs, 1H), 7.10 (bs, 1H), 6.98 (d, 2H), 3.80 (s, 3H)

1-(4-(1H-Imidazol-1-yl) phenyl) ethanone¹

¹HNMR (400MHz, CDCl₃): δ= 8.04 (d, 2H), 7.97 (bs, 1H), 7.50 (d, 2H), 7.35 (bs, 1H), 7.20 (bs, 1H), 2.65 (s, 3H)

1-(4-Nitrophenyl)-1H-imidazole¹

¹H NMR (400MHz, CDCl₃): δ= 8.39 (d, 2H), 7.98 (bs, 1H), 7.60 (d, 2H), 7.40 (bs, 1H), 7.28 (bs, 1H)

1-o-Tolyl-1H-imidazole¹

¹H NMR (400MHz, CDCl₃): δ= 7.55 (bs, 1H), 7.37–7.24 (m, 3H), 7.22–7.17 (m, 2H), 7.09 (bs, 1H), 2.20 (s, 3H)

C-S coupling reaction of Thiophenol with Aryl iodide:

diphenyl sulfide³

¹H NMR (400MHz, CDCl₃): δ = 7.20-7.34 (m, 10H)

4-methylphenyl phenyl sulfide⁴

¹H NMR (400MHz, CDCl₃): δ = 7.28-7.15 (m, 7H), 7.12 (d, 2H), 2.30 (s, 3H)

4-methoxyphenyl phenyl sulfide⁵

¹H NMR (400 MHz, CDCl₃): d = 3.78 (s, 3 H), 6.90 (d, 2H), 7.08-7.22 (m, 5 H), 7.42 (d, 2

H)

4-Nitrophenyl phenyl sulfide⁶

¹H NMR (400MHz, CDCl₃): δ= 7.14 (d, 2H), 7.44-7.46 (m, 3H), 7.46-7.55 (m, 2H), 8.04 (d, 2H)

4-bromophenyl phenyl sulfide⁴

¹H NMR (200MHz, CDCl₃): δ= 7.50-7.14 (m, 9H)

4-chlorophenyl phenyl sulfide⁴

¹H NMR (200MHz, CDCl₃): δ= 7.37-7.25 (m, 9H)

2-Phenylsulfanylaniline⁴

¹H NMR (200MHz, CDCl₃): δ = 7.45-7.40 (m, 1H), 7.25-7.06 (m, 6H), 6.78-6.73 (m, 2H), 3.98 (br, 2H)

3-(phenylthio) pyridine⁶

¹H NMR (400 MHz, CDCl₃): δ= 7.12-7.14 (m, 1 H), 7.14-7.30 (m, 5 H), 7.50-7.53 (m, 1 H), 8.39-8.43 (m, 1 H), 8.50 (s, 1 H)

The three-component (A³) coupling reaction:

1-(1-Cyclohexyl-3-phenyl-2-propynyl]piperidine.⁷

¹H-NMR (CDCl₃, 400MHz, ppm): δ 7.46-7.44 (m, 2H), 7.30-7.24 (m, 3H), 3.09 (d, 1H), 2.65-2.60 (m, 2H), 2.44-2.40 (m, 2H), 2.14-2.04 (m, 2H), 1.80-1.70 (m, 2H), 1.65-1.51(m, 6H), 1.45-1.40 (m, 2H), 1.34-1.15 (m, 3H), 1.07-0.88 (m, 2H).

N-(1-Isopropyl-3-phenyl-2-propynyl) piperidine⁷

¹H-NMR (CDCl₃, 400MHz, ppm): δ= 7.47–7.44 (m, 2H), 7.34–7.30 (m, 3H), 3.01 (d, 1H), 2.69–2.65 (m, 2H), 2.43 (br, 2H), 1.97-1.93 (m, 1H), 1.68–1.57 (m, 4H), 1.49–1.46 (m, 2H), 1.10 (d, 3H), 1.02 (d, 3H).

1-[1-(1-Ethylpropyl)-3-phenyl-2-propynyl] piperidine⁷

¹H-NMR (CDCl₃, 400MHz, ppm): δ = 7.44-7.41 (m, 2H), 7.33-7.23 (m, 3H), 3.21 (d, 1H), 2.65-2.61 (m, 2H), 2.43-2.39 (m, 2H), 1.78-1.65 (m, 1H), 1.61-1.50 (m, 6H), 1.51-1.40 (m, 4H), 0.91 (t, 3H), 0.83 (t, 3H)

N-(3-Phenyl)-prop-2-ynyl) piperidine⁷

¹H-NMR (CDCl₃, 400MHz, ppm): δ = 7.44-7.42 (m, 2H), 7.31-7.28 (m, 3H), 3.47 (s, 2H), 2.56 (br, 4H), 1.69-1.60 (m, 4H), 1.45 (br, 2H).

1-(1-phenylhept-1-yn-3-yl) piperidine⁷

¹H-NMR (CDCl₃, 400MHz, ppm): δ= 7.44-7.40 (m, 2H), 7.30-7.27 (m, 3H), 3.48-3.45 (d, 1H), 2.70-2.65 (m, 2H), 2.50-2.45 (m, 2H), 1.76-1.60 (m, 6H), 1.61-1.50 (m, 3H), 1.51-1.25 (m, 7H), 0.90-0.86 (t, 3H)

1-(5-cyclohexyl-1-phenylpent-1-yn-3-yl) piperidine⁷

¹H-NMR (CDCl₃, 400MHz, ppm): δ= 7.42-7.41 (m, 2H), 7.30-7.25 (m, 3H), 3.49-3.46 (t, 1H), 2.70-2.65 (m, 2H), 2.47 (br, 2H), 1.75-1.53 (m, 10H), 1.51-1.40 (m, 3H), 1.36-1.08 (m, 6H), 0.96-0.87 (m, 2H)

1-(1,3-Diphenylprop-2-ynyl)pyrrolidine⁸

¹HNMR (CDCl₃, 500MHz, ppm): δ= 1.83 (s, 4H), 2.74 (s, 4H), 4.91 (s, 1H), 7.32–7.35 (m, 4H), 7.40 (t, 2H), 7.50–7.52 (m, 2H), 7.64-7.66 (m, 2H).

1-(1-(4-Methoxyphenyl)-3-phenylprop-2-ynyl) pyrrolidine⁸

¹H NMR (CDCl₃, 500MHz, ppm): δ= 1.81 (m, 4H), 2.71 (m, 4H), 3.83 (s, 3H), 4.85 (s, 1H), 6.90 (d, 2H), 7.35 (m, 3H), 7.51–7.52 (m, 2H), 7.52–7.55 (m, 2H).

1-(1-(4-Chlorophenyl)-3-phenylprop-2-ynyl) pyrrolidine⁸

¹H NMR (CDCl₃, 500MHz, ppm): δ= 1.82 (m, 4H), 2.71 (m, 4H), 4.90 (s, 1H), 7.34–7.37 (m, 5H), 7.50–7.53 (m, 2H), 7.57–7.60 (m, 2H).

1-[1-Cyclohexyl-3-phenyl-2-propynyl] pyrrodine⁸

¹H-NMR (CDCl₃, 400MHz, ppm): δ= 7.43-7.42 (m, 2H), 7.31-7.24 (m, 3H), 3.33 (d, 1H), 2.74-2.70 (m, 2H), 2.64-2.63 (m, 2H), 2.08 (d, 1H), 1.94 (d, 1H), 1.75-1.74 (m, 6H), 1.68-1.64 (m, 1H), 1.60-1.51 (m, 1H), 1.31-1.04 (m, 5H).

1-[1-Cyclohexyl-3-(4-methylphenyl)-2-propynyl] piperidine⁹

¹H-NMR (CDCl₃, 400MHz): δ 7.30 (d, 2H), 7.06 (d, 2H), 3.08 (d, 1H), 2.66-2.58 (m, 2H), 2.40-2.32 (m, 2H), 2.30 (s, 3H), 2.10-1.96 (m, 2H), 1.77-1.67 (m, 2H), 1.64-1.47 (m, 6H), 1.44-1.35 (m, 2H), 1.31-1.10(m, 3H), 1.06-0.88 (m, 2H)

1-(1-cyclohexyl-3-(4-methoxyphenyl) prop-2-ynyl) piperidine⁷

¹H-NMR (400MHz, CDCl₃): δ= 7.36 (d, 2H), 6.80 (d, 2H), 3.81 (s, 3H), 3.07 (d, 1H), 2.65-2.58 (m, 2H), 2.38 (br, 2H), 2.10-2.02 (m, 2H), 1.76-1.56 (m, 8H), 1.45-1.40 (m, 2H), 1.30-1.01 (m, 3H), 1.00-0.86 (m, 2H)

1-(1-cyclohexyl-3-(3-methoxyphenyl) prop-2-ynyl) piperidine⁷

¹H-NMR (400MHz, CDCl₃): δ= 7.20-7.17 (m, 1H), 7.05 (d, 1H), 6.97 (d, 1H), 6.81-6.80 (d, 1H), 3.81 (s, 3H), 3.10(d, 1H), 2.63-2.58 (m, 2H), 2.38 (br, 2H), 2.10-2.01(m, 2H), 1.76-1.53 (m, 8H), 1.45-1.40 (m, 2H), 1.31-1.01 (m, 3H), 1.01-0.85 (m, 2H)

1-(3-(4-chlorophenyl)-1-cyclohexylprop-2-ynyl) piperidine⁷

¹H-NMR (400MHz, CDCl₃): δ = 7.34 (d, 2H), 7.27 (d, 2H), 3.07 (d, 1H), 2.60-2.57(m, 2H), 2.36 (br, 2H), 2.07-2.00 (m, 2H), 1.84-1.73 (m, 2H), 1.66-1.50 (m, 6H), 1.45-1.40 (m, 2H), 1.32-1.13 (m, 3H), 1.04-0.85 (m, 2H)

Reference

1. P. R. Sl Ashton, R. Koniger and J. F. Stoddart, J. Org. Chem. 1996, 61, 903

2. B. M.Choudary, C. Sridhar, M. L. Kantam, G. T. Venkanna and B. Sreedhar, J. Am. Chem. Soc., 2005, 127, 9948

3. C.S. Lai, H. L. Kao, Y. J. Wang and C. F. Lee, Tetrahedron Lett., 2012, 53, 4365-4367.

4. R. S. Schwab, D. Singh, E. E. Alberto, P. Piquini, O. E. D. Rodrigues and A. L. Braga, *Catal. Sci. Technol.*, 2011, **1**, 569–573.

5. J. Mondal, A. Modak, A. Dutta and A. Bhaumik, Dalton Trans., 2011, 40, 5228-5235.

6. C. K. Chen, Y. W. Chen, C. H. Lin, H. P. Lin and C. F. Lee, *Chem. Commun.*, 2010, 46, 282–284.

7. X. Huo, J. Liu, B. Wang, H. Zhang, Z. Yang, X. She and P. Xi, *J. Mater. Chem. A*, 2013, 1, 651–656.

8. Y. Zhao, X. Zhou, T. Okamura, M. Chen, Y. Lu, W. Y. Sun and J. Q. Yu, *Dalton Trans.*, 2012, **41**, 5889–5896.

9. C. Wei, Z. Li and C.-J. Li, Org. Lett., 2003, 5, 4473-4475.