Supporting Materials

Competition of selective catalytic reduction and non selective catalytic reduction over MnO_x/TiO_2 for NO removal: The relationship between gaseous NO concentration and N_2O selectivity

Shijian Yang, ^{ab} Yuwu Fu, ^a Yong Liao, ^a Shangchao Xiong, ^a Zan Qu, ^c Naiqiang Yan, ^c Junhua Li ^{b*}

^a School of Environmental and biological Engineering, Nanjing University of Science and technology, Nanjing, 210094 P. R. China

^b State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), School of Environment, Tsinghua University, Beijing, 100084 P. R. China

^c School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240 P. R. China

^{*} Corresponding author phone and fax: 86-10-62771093; E-mail: lijunhua@tsinghua.edu.cn (J. H.

Li), yangshijiangsq@163.com (S. J. Yang).

1. NO-TPD and NH₃-TPD

Temperature programmed desorption of ammonia (NH₃-TPD) and temperature programmed desorption of NO (NO-TPD) were carried out on the fixed-bed quartz tube reactor.¹ Before the experiment, about 0.10 g of catalyst was pretreated under N₂ atmosphere at 300 °C for 60 min to remove adsorbed H₂O and other gases. After the catalyst was cooled to 50 °C, the N₂ flow was switched to a flow of 500 ppm NH₃/N₂ or 500 ppm NO+2% O₂/N₂ (200 ml min⁻¹) for 60 min. The sample was then purged by N₂ (200 ml min⁻¹) for another 60 min. At last, NH₃-TPD (or NO-TPD) was preformed at a heating rate of 10 °C min⁻¹ to 600 °C under a N₂ flow (200 ml min⁻¹). The capacities of MnO_x/TiO₂ for NH₃ and NO adsorption were calculated from the profiles of NH₃-TPD and NO-TPD (shown in Fig. S1). The capacity of MnO_x/TiO₂ for NO adsorption at 50 °C was about 0.67 mmol g⁻¹, which was much less than that for NH₃ adsorption (2.1 mmol g⁻¹).

2. Kinetic analysis

The kinetic equations of the formation of N_2 and N_2O over MnO_x/TiO_2 through the Langmuir-Hinshelwood mechanism can be approximately described as:

$$\frac{\mathbf{d}[\mathbf{N}_2]}{\mathbf{d}t} = -\frac{\mathbf{d}[\mathbf{NH}_4\mathbf{NO}_2]}{\mathbf{d}t} = k_1[\mathbf{NH}_4\mathbf{NO}_2]$$
(14)

$$\frac{\mathrm{d}[\mathrm{N}_{2}\mathrm{O}]}{\mathrm{d}t} = -\frac{\mathrm{d}[\mathrm{NH}_{4}\mathrm{NO}_{3}]}{\mathrm{d}t} = k_{2}[\mathrm{NH}_{4}\mathrm{NO}_{3}]$$
(15)

According to Reactions 11 and 12, the formation of NH_4NO_2 and NH_4NO_3 on MnO_x/TiO_2 can be described as:

$$\frac{d[NH_4NO_2]}{dt} = -\frac{d[NO_2^-]}{dt} = k_7[NH_{3(ad)}][NO_2^-]$$
(S1)

$$\frac{d[NH_4NO_3]}{dt} = -\frac{d[NO_3^-]}{dt} = k_8[NH_{3(ad)}][NO_3^-]$$
(S2)

Where, k_7 , k_8 , $[NH_{3(ad)}]$, $[NO_2^-]$ and $[NO_3^-]$ were the kinetic constants of Reactions 11 and 12, and the concentrations of $NH_{3(ad)}$, NO_2^- and NO_3^- on MnO_x/TiO_2 , respectively.

According to Equations 14-15 and Equations S1-S2, the variation of NH_4NO_3 and NH_4NO_2 concentrations on MnO_x/TiO_2 can be described as follows:

$$\frac{d[NH_4NO_2]}{dt} = k_7[NH_{3(ad)}][NO_2^{-}] - k_1[NH_4NO_2]$$
(S3)

$$\frac{d[NH_4NO_3]}{dt} = k_8[NH_{3(ad)}][NO_3^-] - k_2[NH_4NO_3]$$
(S4)

As the reaction reached the steady state, the concentrations of NH_4NO_3 and NH_4NO_2 would not change. Therefore,

$$\frac{\mathrm{d}[\mathrm{NH}_4\mathrm{NO}_2]}{\mathrm{d}t} = \frac{\mathrm{d}[\mathrm{NH}_4\mathrm{NO}_3]}{\mathrm{d}t} = 0$$
(S5)

According to Equations S3-S4, the concentrations of NH_4NO_3 and NH_4NO_2 on MnO_x/TiO_2 at the steady state can be described as:

$$[NH_4NO_2] = \frac{k_7 [NH_{3(ad)}][NO_2^-]}{k_1}$$
(S6)

$$[NH_4NO_3] = \frac{k_8[NH_{3(ad)}][NO_3]}{k_2}$$
(S7)

According to Reactions 9 and 10, the formation of NO_2^- and NO_3^- on MnO_x/TiO_2 can be described as follows:

$$\frac{d[NO_2^-]}{dt} = k_9[NO_{(ad)}][Mn^{4+}]$$
(S8)

$$\frac{d[NO_{3}^{-}]}{dt} = k_{10} [NO_{(ad)}] [Mn^{4+}]^{\beta}$$
(S9)

Where, k_9 , k_{10} , β , $[NO_{(ad)}]$ and $[Mn^{4+}]$ were the kinetic constants of Reactions 9 and 10, the reaction order with respect to the concentration of Mn^{4+} on MnO_x/TiO_2 and the concentrations of NO adsorbed and Mn^{4+} on MnO_x/TiO_2 , respectively.

Taking account of the reduction of NO_3^- and NO_2^- (Equations S1-S2), the variation of NO_3^- and NO_2^- concentrations on MnO_x/TiO_2 can be described as follows:

$$\frac{d[NO_{2}^{-}]}{dt} = k_{9}[NO_{(ad)}][Mn^{4+}] - k_{7}[NH_{3(ad)}][NO_{2}^{-}]$$
(S10)

$$\frac{d[NO_{3}^{-}]}{dt} = k_{10}[NO_{(ad)}][Mn^{4+}]^{\beta} - k_{8}[NH_{3(ad)}][NO_{3}^{-}]$$
(S11)

As the reaction reached the steady state, the concentrations of NO_3^- and NO_2^- would not change.

Therefore,

$$\frac{d[NO_{2}^{-}]}{dt} = \frac{d[NO_{3}^{-}]}{dt} = 0$$
(S12)

According to Equations S10-S11, the concentrations of NO_3^- and NO_2^- on MnO_x/TiO_2 at the steady state can be described as follows:

$$[NO_{2}^{-}] = \frac{k_{9}[NO_{(ad)}][Mn^{4+}]}{k_{7}[NH_{3(ad)}]}$$
(S13)

$$[NO_{3}^{-}] = \frac{k_{10}[NO_{(ad)}][Mn^{4+}]^{\beta}}{k_{8}[NH_{3(ad)}]}$$
(S14)

As shown in Equations S13 and S14, the concentration of adsorbed NO_2^- and NO_3^- would both decrease as the concentration of adsorbed NH_3 increased.

Thus,

$$[NH_4NO_2] = \frac{k_7[NH_{3(ad)}][NO_2^-]}{k_1} = \frac{k_9[NO_{(ad)}][Mn^{4+}]}{k_1}$$
(S15)

$$[NH_4NO_3] = \frac{k_8[NH_{3(ad)}][NO_3]}{k_2} = \frac{k_{10}[NO_{(ad)}][Mn^{4+}]^{\beta}}{k_2}$$
(S16)"

3. NH₃ oxidization

Fig. S2 shows NH₃ conversion and selectivity of the catalytic oxidization of NH₃ over MnO_x/TiO_2 . At less than 175 °C, little NH₃ can be oxidized by MnO_x/TiO_2 . With the further increase of reaction temperature, NH₃ conversion obviously increased. However, more than 50% of NH₃ was oxidized to N₂O above 200 °C. Meanwhile, NO_x (including NO and NO₂) can not be observed in the outlet.

The mechanism of the catalytic oxidization of NH₃ can be approximately described as: ²

$$\mathrm{NH}_{\mathrm{3(g)}} \to \mathrm{NH}_{\mathrm{3(ad)}} \tag{7}$$

$$NH_{3(ad)} + \equiv Mn^{4+} \rightarrow -NH_2 + \equiv Mn^{3+} + H^+$$
(16)

$$-\mathrm{NH}_{2} + \equiv \mathrm{Mn}^{4+} \rightarrow -\mathrm{NH} + \equiv \mathrm{Mn}^{3+} + \mathrm{H}^{+}$$
(17)

$$2NH + \frac{3}{2}O_2 \xrightarrow{Mn^{4+}} 2NO + H_2O$$
(S17)

$$-\mathrm{NH}_2 + \mathrm{NO}_{(\alpha)} \to \mathrm{N}_2 + \mathrm{H}_2\mathrm{O} \tag{18}$$

$$-\mathrm{NH} + \mathrm{NO}_{(g)} \to \mathrm{N}_2\mathrm{O} + \mathrm{H}^+ \tag{19}$$

$$\equiv \mathrm{Mn}^{3+} + \frac{1}{4}\mathrm{O}_2 \longrightarrow \equiv \mathrm{Mn}^{4+} + \frac{1}{2} \equiv \mathrm{O}^{2-}$$
(13)

The over-activated NH₃ (NH) can be further oxidized to NO by Mn^{4+} on MnO_x/TiO_2 (i.e. Reaction S17), which could be the rate control step of the catalytic oxidization of NH₃. The formed NO from NH₃ oxidization can then be reduced by NH₂ and NH on MnO_x/TiO_2 to N₂ and N₂O, respectively. They were so-called selective catalytic oxidization of NH₃ and non-selectivity catalytic oxidization of NH₃ ³⁻⁵. The concentration of NO resulted from NH₃ oxidization was very low, so N₂O selectivity of NH₃ oxidization was much higher than the reaction with 500 ppm of NH₃ and 500 ppm of NO (shown in Fig. 2).

References:

Z. X. Ma, H. S. Yang, Q. Li, J. W. Zheng and X. B. Zhang, *Appl. Catal. A-Gen*, 2012, 427, 43-48.

2. L. Chmielarz, P. Kustrowski, A. Rafalska-Lasocha and R. Dziembaj, Appl. Catal. B-Environ,

2005, 58, 235-244.

- 3. G. Ramis, L. Yi and G. Busca, Catal. Today, 1996, 28, 373-380.
- 4. R. Q. Long and R. T. Yang, J. Catal., 2002, 207, 158-165.
- 5. P. Fabrizioli, T. Burgi and A. Baiker, J. Catal., 2002, 207, 88-100.

Fig. S1 NO-TPD and NH₃-TPD of MnO_x/TiO_2

Fig. S2 NH₃ conversion and selectivity of the catalytic oxidization of NH₃ over MnO_x/TiO_2 . Reaction condition: [NH₃]=500 ppm, [O₂]=2%, catalyst mass=200 mg, total flow rate =200 mL min⁻¹, GHSV= 60000 cm³ g⁻¹ h⁻¹.