Supporting Information Ce_{0.9}Fe_{0.1}O_{1.97}/Ag: A cheaper inverse catalyst with excellent oxygen storage capacity and improved activity towards CO oxidation

Ying Zuo, Liping Li, Xinsong Huang, and Guangshe Li*

[†]State Key Lab of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P.R. China.

E-mail: guangshe@fjirsm.ac.cn; Fax: +86-591-83702122

Sample characterization

Fig. S1 Enlarged XRD patterns of (a) CeO_2 , (b) CeO_2 -Fe₂O₃, and (c) $Ce_{0.9}Fe_{0.1}O_{1.97}$ between theta of 46.5-49.0°.

Fig.S2 XPS spectra of (a) Ce(3d) region, (b) Fe(2p) region of Ce_{0.9}Fe_{0.1}O_{1.97}. To determine the oxidation state of Ce and Fe in Ce_{0.9}Fe_{0.1}O_{1.97}, XPS spectra of Ce (3d) and Fe (2p) region were evaluated. By the method introduced by Hilaire et at.³ three doublets from CeO₂ (solid lines in black) and two doublets from Ce₂O₃ could be identified as shown in Fig S3. More detailed information are given in Table. S2 and it could be indicated that the results agreed well with previous literature.^{1-2,4} Amount of Ce³⁺ detected in the sample is about 8.38%. The binding energy of Fe(2p3/2, 1/2) is observed at 710.6 and 724.6eV (Fig S1(b)), corresponding to the 3+ oxidation state of Fe.^{1,5} Thus it could be suggested that the formula of Ce-Fe solid solution is Ce⁺⁴_{0.825}Ce⁺³_{0.075}Fe⁺³_{0.1}O_{1.97}.

Ionic state	Spin-orbit doublet	components	BE (±0.2eV)	<i>FWHM(±0.2eV)</i>	$\triangle E(\pm 0.1 \text{eV})$
		v	882.6	2.5	-34.2
Ce ⁴⁺	3d5/2	v'	888.6	4.3	-28.2
		v""	898.3	2.2	-18.5
		u	901.1	2.5	-15.7
	3d _{3/2}	u'	907.3	4.3	-9.5
		u'''	916.8	2.2	0
Ce ³⁺	245/2	vo	881.1	2.9	-35.7
	505/2	v	885.4	3.0	-31.4
	24	u	899.3	2.9	-17.5
	5u _{3/2}	u'	903.7	3.0	-13.1

Table S1. Assignment of Ce 3d_{3/2.5/2} components from XPS spectra collected for Ce_{0.9}Fe_{0.1}O_{1.97}.

Fig. S3 XRD patterns of CeO₂-Fe₂O₃.

Fig. S4 TEM images of CeO_2 . As indicated in Fig. S4, the primary morphology for CeO_2 was nanocube.

Fig.S5 XPS spectra of (a) Ce(3d) region of CeO₂. XPS spectra of Ce (3d) was evaluated to determine the oxidation state of Ce in CeO₂. The Ce 3d spectra composed of two multiplets (u and v), corresponding to she spin-orbit splitting of $3d_{3/2}$ and $3d_{5/2}$, respectively. ¹As shown in Fig. S2, six obvious peaks for Ce⁴⁺ were identified (in solid line), while signals for Ce³⁺ were quite weak (in dashed line). Further details on the evaluation of CeO₂ XPS spectra is shown in Table S1. By calculation, Ce³⁺ in CeO₂ is 0.70%, therefore the composition of ceria could be given as Ce⁴⁺_{0.993}Ce³⁺_{0.007}O_{1.997}.

Ionic state	Spin-orbit doublet	components	BE (±0.2eV)	<i>FWHM(±0.2eV)</i>	$\triangle E(\pm 0.1 \text{eV})$
Ce ⁴⁺		V	882.5	2.5	-34.2
	3d _{5/2}	v'	888.5	4.2	-28.2
		v""	898.3	2.3	-18.5
		u	901.1	2.4	-15.7
	3d _{3/2}	u'	907.3	4.2	-9.5
		u""	916.8	2.3	0
Ce ³⁺	24	V	882.5	2.5	-34.2
	30 _{5/2}	v'	888.5	4.2	-28.2
	24	u	899.3	2.9	-17.5
	5u _{3/2}	u'	903.7	3.0	-13.1

Table S2 Assignment of Ce 3d_{3/2.5/2} components from XPS spectra collected for CeO₂.

Fig. S6 XRD patterns of Ag. XRD pattern of Ag was shown in Fig.S6. The diffraction peaks indicated the formation of Ag with a crystallite size of 27nm.

Fig. S7 XRD patterns of Ag-Fe₂O₃. XRD pattern of Ag-Fe₂O₃ was shown in and Fig.S7. The diffraction peaks fitted well with standard Fe_2O_3 and Ag pattern, which indicating the successful formation of Ag-Fe₂O₃.

Fig.S8 XRD patterns of Ag-CeO₂. XRD pattern of Ag-CeO₂ was shown in and Fig. S8. The diffraction peaks fitted well with standard CeO₂ and Ag pattern, which indicating the successful formation of Ag-CeO₂.

Fig.S9 XRD patterns of Ag-Ce_{0.9}Fe_{0.1}O₂-M. XRD pattern of Ag-Ce_{0.9}Fe_{0.1}O_{1.97}-M was shown in Fig.S9. The diffraction peaks fitted well with standard CeO₂ and Ag pattern, which indicating the successful formation of Ag-Ce_{0.9}Fe_{0.1}O_{1.97}-M.

Table S3. Specific surface area of the samples.

Sample	CeO ₂	Fe ₂ O ₃	CeO ₂ -Fe ₂ O ₃	Ce _{0.9} Fe _{0.1} O _{1.97}	Ag	Ag-Fe ₂ O ₃	Ag-CeO ₂	Ag@CeO2	Ag-Ce _{0.9} Fe _{0.1} O _{1.97} -M	Ce _{0.9} Fe _{0.1} O _{1.97} /Ag
S _{BET} (m ² /g)	58.71	35.82	52.02	69.13	8.09	29.89	45.18	30.18	32.06	29.04

Fig.S10 XRD patterns of CeO₂/Ag. XRD pattern of CeO₂/Ag was shown in and Fig.S10. As seen from the Figure, it is clear that the diffraction lines could be indexed to CeO₂ and Ag, and the core-shell structure will be further investigated by TEM.

Fig.S11 (a) TEM, (b) and (c) EDX spectra of CeO_2/Ag . Microstructure of CeO_2/Ag is shown in Fig. S11. The formation of Ag core and CeO_2 shell could be well indicated from the figure.

References

1. E. Beche, G. Peraudeau, V. Flaud and D. Perarnau, Surf. Interface Anal., 2012, 44, 1045-1050. 2. X.-S. Huang,

H. Sun, L.-C. Wang, Y.-M. Liu, K.-N. Fan and Y. Cao, *Appl. Catal.*, *B*, 2009, **90**, 224-232.

3. S. Hilaire, J. P. Delaroche and M. Girod, European Physical Journal A, 2001, 12, 169-184.

4. M. Romeo, K. Bak, J. Elfallah, F. Lenormand and L. Hilaire, Surf. Interface Anal., 1993, 20, 508-512.

5. A. T. Kozakov, A. G. Kochur, K. A. Googlev, A. V. Nikolsky, I. P. Raevski, V. G. Smotrakov and V. V. Yeremkin, *J. Electron Spectrosc. Relat. Phenom.*, 2011, **184**, 16-23.