Supporting Information

Heterolytic cleavage of Si–H bonds: Reduction of imines using silane/high-valent oxo-molybdenum MoO₂Cl₂ as a catalyst

Yiou Wang, Piao Gu, Wenmin Wang and Haiyan Wei*

Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX DOI: 10.1039/b000000x

- 1. Complete reference of 9.
- 2. Table S1 The relative free energies of the key transition states obtained at M06(6-311++G(d,p)+ LANL2DZ), M06(6-311++G(d,p)+ SDD) and M06(6-311++G(d,p)+ QVZP) and MP2(6-311G(d,p)+ LANL2DZ) calculation level for MoO_2Cl_2 mediated the hydrosilylation reaction are shown.
- 3. Table S2 The relative free energies of the key transition states obtained at B3LYP-D(6-311++G(2d,p)+ QVZP), M06(6-311++G(2d,p)+ QVZP) calculation level for MoO₂Cl₂ mediated the hydrosilylation reaction are shown.
- 4. Table S3 The relative free energies with different solvation, $(CH_2Cl_2, THF and Toluene)$ of the key transition states and the intermediates obtained at M06(6-311++G(2d,p)+ QVZP) calculation level for MoO₂Cl₂ mediated the hydrosilylation reaction are shown.
- 5. Scheme S1 The energy profile for MoO₂Cl₂ catalyzing the hydrosilylation of imines process through the [2+2] addition pathway. The solvation energies are included in parentheses, and the gas-phase energies are the values without parentheses.
- 6. Figure S1. The calculated geometric structures of the transition states along the [2+2] addition pathway.
- 7. Figure S2 The calculated geometric structures of the transition states for the transformation between the ion pair of **5anti**, **5syn** and **6syn**. The solvation energies are included in parentheses, and the gas-phase energies are the values without parentheses
- 8. Figure S3 The calculated geometric structures of other two isomer of **TS4syn**. The solvation energies are included in parentheses, and the gas-phase energies are the values without parentheses.
- 9. Figure S4 The detailed scan plot for the ionic hydrosilylation pathway from the adduct **3+im**.
- 10. Figure S5 The IRC plot for the ionic hydrosilylation pathway from the transition state **TS4anti**.
- 11. Table S4 Cartesian coordinates for all optimized structures in XYZ format.

Complete reference of 9

Frisch, M. J. et al. *Gaussian 09*; Gaussian, Inc. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; and Pople, J. A.; Gaussian, Inc., Pittsburgh PA,, 2009. **Table S1** The relative free energies of the intermediates and transition states obtained at M06(6-311++G(d,p)+ LANL2DZ), M06(6-311++G(d,p)+ SDD) and M06(6-311++G(d,p)+ QVZP) calculation level for MoO_2Cl_2 mediated the hydrosilylation reaction are shown. The solvation energies are included in parentheses, and the gas-phase energies are the values without parentheses.

	M06 6-311+++G(d,p) + LANL2DZ)	M06 (6-311+++G(d,p)+ SDD	M06 (6-311++G(2d,p) + QVZP)	MP2 (6-311G(d,p)+ LANL2DZ
TS[2+2]	28.7(26.4)	29.1	30.9(29.0)	38.8 (35.9)
TS4anti	18.1(14.4)	20.4	25.4(21.4)	20.0(19.7)

These results have indicated that the ionic hydrosilylation pathway passing through **TS4anti** is the most favorable pathway at all level of calculation.

Table S2 The relative free energies of the key transition states obtained at B3LYP-D(6-311++G(2d,p)+ QVZP), M06(6-311++G(2d,p)+ QVZP) calculation level for MoO_2Cl_2 mediated the hydrosilylation reaction are shown.

	B3LYP	M06	B3LYP-sol	M06-sol
	(6-311++G(2d,p) + QVZP)	(6-311++G(2d,p) + QVZP)	(6-311++G(2d,p) + QVZP)	(6-311++G(2d,p) + QVZP)
3+im	11.1	14.3	13.0	17.2
TS4anti	25.7	25.4	17.0	21.4
4anti	25.4	25.3	13.4	16.5

Table S3 The relative free energies with different solvation, $(CH_2Cl_2, THF and Toluene)$ of the key transition states and the intermediates obtained at M06(6-311++G(2d,p)+ QVZP) calculation level for MoO₂Cl₂ mediated the hydrosilylation reaction are shown.

	M06-gas (6-311++G(2d,p) + QVZP)	M06- CH ₂ Cl ₂ (6-311++G(2d,p) + QVZP)	M06-THF (6-311++G(2d,p) + QVZP)	M06-Toluene (6-311++G(2d,p) + QVZP)
3+im	14.3	17.2	16.4	20.0
TS4anti	25.4	21.4	21.9	27.9
4anti	25.3	16.5	17.8	25.9
5anti	28.6	12.0	12.8	23.7
TS5syn	33.6	30.7	32.0	37.7
5syn	15.9	7.5	8.4	16.8
6syn	16.6	7.8	8.4	17.0
TS7	19.6	12.5	13.4	21.2

Scheme S1 The energy profile for MoO_2Cl_2 catalyzing the hydrosilylation of imines process through the [2+2] addition pathway. The solvation energies are included in parentheses, and the gas-phase energies are the values without parentheses.

Figure S1. The calculated geometric structures of the transition states along the [2+2] addition pathway.

Figure S2 The calculated geometric structures of the transition states for the transformation between the ion pair of **5anti**, **5syn** and **6syn**. The solvation energies are included in parentheses, and the gas-phase energies are the values without parentheses.

Electronic Supplementary Material (ESI) for Catalysis Science & Technology This journal is The Royal Society of Chemistry 2013

Figure S3 The calculated geometric structures of other two isomer of **TS4syn**. The solvation energies are included in parentheses, and the gas-phase energies are the values without parentheses.

Figure S4 The detailed scan plot for the ionic hydrosilylation pathway from the adduct **3+im**. (The first maximum point corresponds to the transition state TS4anti, the first minimum point corresponds to the first intermediate 4anti. The maximum point corresponds to the second transition state 5anti, and then the laste point corresponds to the syn intermediate 5syn)

Figure S5 The IRC plot for the ionic hydrosilylation pathway from the transition state **TS4anti**. (From the last point of the IRC calculation (both forward and reverse calculations), we optimization the structures, which leads to the adduct of 3+im, and 4anti, respectively.

Table S4 Cartesian coordinates for each structure calculated. (XYZ format).

1				Н	-3.600965	-1.708118	-3.510147
Мо	0.109824	-0.384989	0.246467	Н	-2.569668	2.396042	-2.401461
0	-0.062374	0.719808	1.475190	Н	-3.335423	1.611702	-3.793056
Õ	1 662329	-0 219766	-0 321355	Н	-4.098122	1.525656	-2.191283
CĬ	-1 365225	0.078476	-1 412072	Н	-5.080090	0.330534	-4.832612
Cl	-0.190556	-2 482006	1.054927	Н	-4.414982	1.194350	-6.209382
CI	-0.170550	-2.402000	1.054727	Н	-5 450984	-0 227246	-6 484346
TC[2]	21			Н	-1 424796	-2 458649	-7 184201
15[2+	-2] 1 1 492 40	1 255720	0 255704	н	-1.424790	-2.456045	-5 442128
0	1.148240	-1.255/20	-0.355/94	11 U	2 2 1 0 9 0 9	2.030247	-5.442128
Mo	-0.130813	-0.193612	0.206998	п	-2.319696	-3.4/93/4	-0.072387
CI	-0.568068	2.100/8/	-0.181769	TCA			
S1	2.791967	-0.023091	-0.292424	1 54ar	10	0.2000/1	0.050057
0	-0.519644	-0.586312	1.769440	Mo	3.510907	-0.308961	0.05905/
Cl	-1.912639	-0.675526	-1.179527	0	3.905095	-0.850368	1.591861
Н	1.339261	0.713545	0.582210	0	4.845960	-0.45/286	-0.929822
С	3.525836	1.503586	0.533511	Cl	3.577706	2.014622	0.488351
С	2.638268	0.336592	-2.107912	Cl	2.278911	-2.206693	-0.653385
С	3.765910	-1.487219	0.308376	Н	1.842175	0.398069	-0.588740
Н	4.832805	-1.238784	0.327526	Si	0.249839	0.652264	-0.324326
Н	3.465294	-1.744666	1.329030	Ν	-2.260556	0.757576	0.065427
Н	3 598574	-2.363916	-0 320698	С	-3.003946	-0.264992	0.243562
н	4 563795	1 611422	0 188978	С	-4.494129	-0.247800	0.177589
ц	2 07/285	2 400745	0.262184	Č	-5 261624	-0 540758	1 301498
и Ц	2.974203	1 420082	1 62/2134	Č	-6 646747	-0 550896	1 217805
п	2 564169	0.780440	2 470150	C	-7 272785	-0 294467	0.005955
п	2.304108	0.789449	-2.4/9139	C C	-6 511760	-0.018905	-1 122493
п	2.41//04	-0.565044	-2.083098	C C	5 128252	-0.010905	1.025924
Н	1.832895	1.060/90	-2.281630	C	-3.126232	0.010909	-1.053624
				C	0.202578	2.305235	-0.3/8518
3+im				C	-0.288210	-0.323187	-1.852212
Mo	-0.063877	0.060200	0.681809	C	0.355998	0.093322	1.463656
0	-1.459775	0.105039	1.582720	C	-2.860906	2.063628	-0.136517
0	1.163957	0.078383	1.802947	С	-2.423760	-1.620253	0.490821
Cl	0.286856	2.026780	-0.452645	Н	1.149130	0.682305	1.941993
Cl	0.232176	-1.979071	-0.333937	Н	-4.773797	-0.747155	2.250887
Н	-1.729238	0.045575	-0.952987	Н	-7.238993	-0.765449	2.101726
Si	-2.169094	-0.046524	-2.392311	Н	-8.355976	-0.311825	-0.060290
Ν	-3.467127	-0.601116	-5.732579	Н	-6.997976	0.175592	-2.073239
С	-3.263967	-1.600094	-6.492967	Н	-4.527995	0.230343	-1.916404
Č	-4 142317	-2.032458	-7 620803	Н	-0.454672	-1.381942	-1.622901
Č	-4 726395	-3 297565	-7 618439	Н	-1.206215	0.104484	-2.248866
Č	-5 532774	-3 702918	-8 672233	Н	0.499264	-0.266706	-2.590256
Č	-5 745883	-2 856154	-9 751141	Н	0.630148	-0.962535	1.556326
C	5 156185	1 500241	0 768833	Н	-0 569665	0 270055	2.015116
C	4 364076	1 187002	-7.700035 8 707225	Н	1 256370	2.820008	-0 906374
C	-4.304070	-1.16/992	-0.707223	Н	-0.462746	2 814307	-1 335185
C	-5.159820	1.510951	-2./19949	и И	0.048713	2.014507	0.35/36/
C	-3.192216	-1.605//1	-2.499640	11 U	2 200820	2 802867	0.334304
Н	-4.020912	-1.589314	-1./84842	11	-2.299639	2.803807	1 102/29
C	-0.636069	-0.101/42	-3.458424	п	-2.770390	2.349038	-1.192458
С	-4.667989	0.192923	-5.839934	н	-3.915/48	2.114600	0.150455
С	-2.041742	-2.439179	-6.278512	H	-2./36629	-2.300685	-0.3101/9
Н	-4.561593	-3.965498	-6.776704	Н	-1.336765	-1.616991	0.553909
Н	-5.993511	-4.685762	-8.652435	Н	-2.832785	-2.036146	1.418689
Н	-6.370213	-3.176305	-10.579451				
Н	-5.315430	-0.935189	-10.612860	4anti			
Н	-3.903742	-0.203030	-8.718758	Mo	-0.180211	-0.179486	-0.634294
Н	-0.080407	-1.036848	-3.331040	0	-0.282532	-0.532350	1.001429
Н	-0.940899	-0.015324	-4.507154	0	1.408220	0.059613	-1.125678
Н	0 037847	0 730328	-3 229027	Cl	-0.856874	2.093703	-0.585902
Н	-2 578298	-2.487151	-2 284094	Cl	-0.415313	-2.408213	-1.483606
	2.370270	2.10/101	2.204074	Н	-1.643061	-0.088912	-1.735321

Si	-2.625497	-0.198821	-3.255880	Н	-2.916439	1.355153	0.614195
Ν	-3 607337	-0.678129	-5.063241	Н	-4 547766	0.630299	0 562534
C	2 204572	1 (07751	5.005211	11	2 100115	0.0502))	0.002001
C	-3.294572	-1.08//51	-5./92035	п	-3.108115	-0.395201	0.044957
С	-3.928865	-1.975065	-7.105810	Н	-1.755196	2.102665	-2.249251
С	-4.622361	-3.165395	-7.311714	Н	-2.938729	1.991077	-3.567060
С	-5 179792	-3440107	-8 551761	Н	-2 604123	-1 868965	-1 860004
Č	5 020727	2 544671	0.600010	11 U	1 2 5 9 7 1 9	1.000505	1.607521
C	-3.020727	-2.344071	-9.000010	п	-4.336/16	-1.937303	-1.09/321
C	-4.312462	-1.366097	-9.405338	H	-3.6180/3	-1.517388	-3.266252
С	-3.775709	-1.076646	-8.160725	Н	-5.489037	-0.206749	-3.683555
С	-3.418224	1.471458	-2.987645	Н	-6.434298	-0.605406	-2.247417
Ĉ	-3 555300	-1 59//37	-2 403215	н	-6.929018	0 759454	-3 280922
	-3.333377	1 2(7002	1 22(220	11	-0.727010	2 201200	-3.200722
Н	-3.635986	-1.36/083	-1.336338	H	-5.006009	3.381389	-0.028180
С	-0.953943	-0.041502	-4.111941	H	-3.61/3/8	2.934860	-1.044222
С	-4.739626	0.168868	-5.421583	Н	-4.744206	4.216290	-1.542317
С	-2.227548	-2.652663	-5.402457				
н	-4 744327	-3 871494	-6 494583	5evn			
11	5 72 4 25 2	1 260000	-0. -)505	Ssyn	1 207076	5 142594	5 221204
п	-3./34232	-4.500888	-8.701001	U_	-1.29/9/0	5.142584	5.551204
Н	-5.446994	-2.766972	-10.572946	С	-1.556452	4.251367	4.301422
Н	-4.178812	-0.668515	-10.225783	С	-0.668741	3.201931	4.060157
Н	-3.222896	-0.153444	-8.004480	С	0.469557	3.057782	4.857434
н	-0.267275	-0.858567	-3 875/01	Ċ	0 735273	3 072882	5 862572
11	1 0201213	-0.050507	5 100(54	C	0.152275	5.011057	6.105129
Н	-1.0381/4	0.053686	-5.199654	C	-0.153358	5.011957	6.105128
Н	-0.502604	0.882279	-3.729267	С	-0.936024	2.196877	3.009189
Н	-3.070376	-2.569036	-2.483916	Ν	-1.077068	2.497688	1.754532
Н	-4.567118	-1.666029	-2.820364	Si	-1.387520	1.245142	0.373045
н	-2 882662	1 078861	-2 179061	C	-2 712767	0.017028	0.826900
11	-2.882002	2 100719	-2.17 001	C	1.022020	0.017920	2 402002
п	-3.340089	2.109/18	-3.8/4044	C	-1.033939	0./90300	5.495905
Н	-4.469283	1.396477	-2.692170	С	0.306910	0.475535	0.175945
Н	-5.335928	0.346688	-4.523289	С	-1.800673	2.190098	-1.168993
Н	-4.387080	1.141381	-5.778178	Мо	-4.856322	3.688679	1.806243
н	-5 372637	-0.282701	-6 187140	0	-6 522963	3 455551	1 7223/11
11	-5.572057	-0.202771	-0.107140	0	4 2005 40	4.094212	2 755244
Н	-1.40/610	-2.593653	-6.128142	0	-4.290540	4.984213	2.755244
Н	-1.826322	-2.502488	-4.402274	Cl	-4.344732	1.994162	3.460592
Н	-2.623469	-3.671166	-5.477201	Cl	-4.420052	4.637718	-0.333513
				Н	-3.765540	2.592187	1.046256
5anti				н	-3 404503	-0.05/085	-0.019627
Sanu M.	0.000(52	0.007451	0 122222	11 11	2 205082	-0.034765	-0.017027
MO	0.089653	-0.00/451	0.132233	п	-2.295082	-0.977055	1.013039
0	-0.207988	-0.119973	1.792419	Н	-3.306206	0.325405	1.693358
0	1.715066	0.048199	-0.307872	Н	-2.682664	2.830582	-1.066685
Н	-1.185050	0.105795	-1.060113	Н	0.302211	-0.191628	-0.693531
Si	-3 430873	0 380612	-1 645331	Н	-0 966472	2 788369	-1 547207
N	5 204761	1 000266	2 086480	11 U	0.620251	0.111202	1.040027
IN C	-3.204701	1.099300	-2.060469	п	0.029331	-0.111602	1.040927
C	-5.581765	2.283988	-1.740315	H	-2.028074	1.435407	-1.933004
С	-6.963103	2.779080	-1.942700	Н	1.061634	1.247985	-0.011588
С	-8.029476	2.126557	-1.323499	Н	-1.023829	0.042693	2.709126
С	-9 316392	2 623230	-1 451934	Н	-0 229419	0 595352	4 206025
Ĉ	-9 550020	3 759319	-2 215815	н	-1 977309	0 713482	4 048260
C	9.402084	4 409907	2.215015	11	1 1 (7020	0.715402	4 (74011
C	-8.492984	4.408807	-2.83/926	Н	1.16/020	2.244526	4.6/4911
С	-7.199380	3.932836	-2.687841	Н	1.633046	3.868520	6.463028
С	-3.541215	-1.393849	-2.181816	Н	0.046392	5.719929	6.903359
С	-3.511677	0.528540	0.216556	Н	-2.003347	5.944258	5.523083
č	-2 403825	1 415548	-2 802847	н	-2 462454	4 369054	3 711/1/
CI	-2.403023	2 2 (2 2 7 (-2.002047		-2.402434	2.075(00	1 2710(0
CI	-0.42/048	-2.2033/0	-0.43//30	C	-0.890248	5.8/5090	1.2/1809
CI	-0.396427	2.356743	-0.058435	Н	-0.233330	3.850793	0.398507
С	-6.076145	0.221118	-2.867818	Н	-1.851498	4.303127	0.967205
С	-4.663656	3.236789	-1.060167	Н	-0.439264	4.501320	2.039829
H	-1 729211	0 728144	-3 325942				
ц	6 374006	1 1/01/5	2 171221	6			
п	-0.3/4000	4.440143	-3.1/1331	osyn	0 10 10 11	1.0/0010	0.150055
Н	-8.6/4081	5.295826	-3.435837	Мо	0.424061	-1.369019	-0.153376
Н	-10.559743	4.142149	-2.322655	0	-0.140453	-1.426519	1.435124
Η	-10.139827	2.121478	-0.954568	0	2.024776	-0.850929	-0.378407
Н	-7.844290	1.238929	-0.723727	Cl	-0.579447	0.759376	-0.804884

C1	0 662222	2 676150	0 600554	TT	5 405104	0 521692	4 270200
CI	0.002552	-5.0/0159	-0.090334	п	-3.493194	-0.321082	-4.2/0299
Н	-0.6/35/5	-1.666540	-1.435526	H	-3.356/88	2.159698	-3.945284
Si	-3.373742	-0.227181	-3.130062	Н	-4.455626	-1.922003	-4.558032
Ν	-1.666879	-0.631982	-3.797369	Н	-4.445533	1.872015	-2.588697
С	-1.092280	-1.802539	-3.747869	Н	-4.177123	-0.410980	-5.442674
С	-0 985446	0 526633	-4 392853	Н	-2 714651	-2.803858	-2 654777
č	-1.856360	-3 021272	-3 360530	H	-2 168948	-3 380505	-1 233516
C	-1.050500	-3.021272	-3.307337	11	1 227022	-3.380303	-4.233310
C	0.318321	-2.028396	-4.110496	п	-1.23/033	-3.//1093	-2./0304/
С	0.676800	-3.138642	-4.880852	H	-0.102916	-3.802161	-5.040/49
С	2.010585	-3.423667	-5.116454	Н	2.210978	-4.273165	-5.701193
С	3.001670	-2.633735	-4.548767	Н	4.049663	-2.795411	-4.948134
С	1.324647	-1.226144	-3.565316	Н	3.537562	-0.812127	-3.545040
Č	2 656327	-1 541690	-3 765694	Н	1 222436	-0.308239	-2 919768
C	2.602054	1.062022	1 407465	11 U	1 608207	0.005500	5.042678
C	-5.092954	-1.003923	-1.497403		-1.090307	1 220022	-3.043078
C	-4.507705	-0.//8910	-4.50/1/2	п	-0.5/9929	1.229932	-3.084452
С	-3.446669	1.620518	-2.930123	H	-0.153676	0.129749	-5.020306
Н	-4.211111	-0.347451	-0.850461				
Н	-4.323596	-1.953621	-1.588447	TS4	syn		
Н	-2.764120	-1.335996	-0.986703	Мо	-4.579897	2.374750	2.320535
н	-2 692175	1 974816	-2 221386	0	-6 240756	2 462652	2 149563
ц	5 542517	0 506566	4 272138	Ő	4 124156	2.102052	3 800216
11	-3.342317	-0.300300	-4.2/2130	Cl	4.124130	4 200254	0.01(229
п	-3.339813	2.181900	-3.803901	CI	-4.070050	4.209254	0.910338
Н	-4.47/965	-1.860531	-4.6/1624	CI	-4.459567	0.062118	2.755783
Н	-4.430471	1.850092	-2.502525	Н	-3.134007	1.737551	1.209109
Н	-4.244230	-0.284858	-5.449240	Si	-1.846361	1.305497	0.230494
Н	-2.861188	-2.815752	-3.007928	Ν	-1.050115	2.796142	1.778674
Н	-1 937398	-3 663917	-4 254769	С	-0 571548	4 049486	1 216318
н	-1 300817	-3 581396	-2 607881	Č	-0.938789	2 557967	3 031174
11	-1.500017	2 701125	5 208602	C C	-0.756767	2.557707	4.025445
п	-0.080329	-5./81155	-3.308092	C	-0.49101/	5.509581	4.023443
Н	2.277502	-4.2/9669	-5.727355	C	-1.281190	4.694042	4.258997
Н	4.046873	-2.880154	-4.706166	С	-0.898704	5.620215	5.216779
Н	3.420153	-0.942905	-3.281813	С	0.275878	5.437695	5.934853
Η	1.071492	-0.386642	-2.925058	С	1.064442	4.319156	5.703618
Н	-1.705885	1.071230	-5.008682	С	0.675592	3.379008	4.760362
н	-0.615851	1 190832	-3 606166	Č	-1 285279	1 229596	3 612500
ц	0.158270	0.206424	5.024504	C C	2 810225	0.262547	0 200705
11	-0.138279	0.200424	-5.024594	C	-2.810223	-0.202347	-0.209795
				C	-0.080827	0.628321	0.346274
TS 7				С	-2.062168	2.455904	-1.223343
Mo	0.288537	-1.501230	-0.218429	Н	-3.854551	-0.037418	-0.451612
0	-0.550245	-1.702713	1.225877	Н	-2.334628	-0.717587	-1.088725
0	1.881196	-0.980514	-0.023167	Н	-2.810434	-1.005091	0.594010
C1	-0 624192	0.645316	-0 842706	Н	-3 127561	2 562903	-1 448719
Cl	0.671055	-3 750918	-0.845400	Н	0.080196	-0.017443	-0 524822
	0.546770	1 700511	1 720121		1 628050	2 455556	1 121274
	-0.340770	-1.700311	-1.709121	11	-1.038030	0.005002	-1.1313/4
51	-3.336151	-0.216232	-3.114228	H	0.058307	0.005903	1.235691
Ν	-1.630443	-0.617853	-3.703324	H	-1.586461	1.960889	-2.080254
С	-1.008955	-1.773158	-3.499984	Н	0.680100	1.408312	0.352726
С	-0.967603	0.494372	-4.394937	Н	-1.641074	0.506369	2.877324
С	-1.831081	-3.001202	-3.259441	Н	-0.400231	0.820267	4.114136
Ċ	0 387989	-2.003779	-3 956076	Н	-2.055214	1 351013	4 383160
Ĉ	0.685562	-3 125501	-1 727818	Н	1 201751	2 500951	4 583520
C	1.005005	2 206452	-4.727818	II	1.291/31	4 174100	4.363320
C	1.993093	-3.390433	-3.099270	п	1.982070	4.1/4100	0.203830
C	3.022894	-2.56/091	-4.6806/8	Н	0.5/5339	6.16/609	6.68038/
С	1.430992	-1.165020	-3.555195	Н	-1.522737	6.488083	5.404253
С	2.737278	-1.451760	-3.901648	Н	-2.205661	4.826970	3.702122
С	-3.732323	-0.987908	-1.459363	Н	0.004149	3.823881	0.313080
С	-4.463376	-0.830974	-4.471917	Н	0.064886	4.606647	1.908207
Ĉ	-3 450917	1 639508	-2 988269	н	-1 422539	4 673361	0.926653
ъ	1 250022	0.225045	0.854472	11	1.122337	1.075501	0.720055
11 11	-4.230023	-0.233043	-0.0344/2				
п	-4.393422	-1.83412/	-1.332019				
Н	-2.845915	-1.281309	-0.890965	TS(5	antı→5syn)		
Н	-2.713806	2.042996	-2.287848	Mo	-3.358071	-0.579476	0.118864

0	-3.567414	-0.832913	1.783186
0	-4.609729	-1.067855	-0.906573
Η	-1.935751	0.092361	-0.514599
Si	0.259501	1.398168	-0.230042
Ν	2.155723	1.037806	-0.244684
С	2.652219	-0.151618	-0.122548
Č	4 105533	-0 394559	0.014340
c	4 808141	0.173628	1 077970
C	6 152255	0.175028	1.077970
C	0.133233	-0.10/90/	0.2515(4
C	0.811280	-0.936772	0.351504
C	6.118581	-1.499341	-0./113/4
С	4.764849	-1.246811	-0.870391
С	0.102144	3.247143	-0.096583
С	-0.234196	0.667406	1.408330
С	-0.168904	0.877865	-1.966162
Cl	-3.641122	1.811734	0.077752
Cl	-1.784378	-2.386553	-0.269481
С	3.010744	2.209889	-0.448544
Ĉ	1 795417	-1 363232	-0.062971
н	-1 109937	1 357728	-2 253947
ц	1.105957	1.605875	1 600271
н ц	6 621214	2 146000	-1.099271
п	0.051214	-2.140909	-1.414/93
Н	/.86/192	-1.149294	0.483489
Н	6.689727	0.320683	2.090993
Н	4.291320	0.817581	1.784834
Н	-0.420625	-0.407933	1.417361
Н	0.550804	0.905965	2.139983
Η	-1.154222	1.162318	1.737338
Н	-0.292280	-0.198194	-2.109525
Н	0.620424	1.245537	-2.637534
Н	-0.978578	3.429065	-0.013855
Н	0 567961	3 661273	0.803082
н	0.456546	3 793625	-0.975194
н	2 592077	2 800847	-1 267007
ц	3 016500	2.800047	0 447360
11	4.022202	2.837202	0.447309
п	4.032392	1.924679	-0.098149
Н	1.805576	-1./52/59	0.963321
Н	0.756264	-1.225686	-0.363600
Н	2.240479	-2.149119	-0.680640
TS5s	yn→6syn		
Mo	-2.036528	-1.041736	0.037707
0	-3.537958	-0.267863	-0.052430
Cl	-1.586335	-0.762591	2.379672
Cl	-1.334566	-0.673698	-2.253512
Н	-0.605193	-0.102907	0.123815
0	-2.015927	-2.732738	-0.024822
Si	0.211607	2.947591	-0.087459
Ν	1.375698	1.492431	-0.359808
C	1 817377	0 660934	0 536983
Ĉ	2 519949	-0 588695	0 190209
Ĉ	1 032440	-1 523526	-0.667266
C	1.752777	-1.525520	-0.007200
C	2.308302	-2.130013	-0.200343
C	5.602577	-2.999331	-0.331338
C	4.398830	-2.0668/0	0.507260
C	3.749862	-0.8/6618	0.787808
С	1.692385	1.302551	-1.784800
С	-0.837414	2.815292	1.440897
С	-0.881602	2.977992	-1.587851
С	1.392399	4.389888	-0.000765
С	1.604604	0.903074	1.982361
Н	-1.418484	2.029770	-1.710667

TT	0.0(5195	1 224047	1 100000
н	0.905185	-1.324047	-1.122380
Н	2.089451	-3.464447	-1.546236
Н	4.299860	-3.943405	-0.531341
Н	5.364638	-2.273691	0.956325
Н	4.214794	-0.155759	1.454669
Н	-1.237208	1.812133	1.621454
Н	-0.338474	3.163184	2.349483
Н	-1.698103	3.473561	1.267767
Н	-0.360052	3.203438	-2.521532
Н	-1.630355	3.762907	-1.428681
Н	0.831125	5.325517	0.096530
Н	2.054055	4.310528	0.868747
Н	2.016389	4.471406	-0.896543
Н	0.856989	0.812141	-2.294911
Н	1.860710	2.283931	-2.235760
Н	2.595871	0.704076	-1.899434
Н	1.470122	1.955439	2.230463
Н	0.704099	0.343988	2.289573
Н	2.434477	0.491930	2.559737