Supporting information

Hydroesterification of styrene derivatives catalyzed by an acidic resin supporting Palladium complexes

Zhenhong He^{a,b}, Zhenshan Hou^{a,c,*}, Yanping Luo^{a,b}, Yierxiati Dilixiati^{a,b} and Wumanjiang Eli^a

^a Xinjiang Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Urumqi 830011, People's Republic of China

^b University of the Chinese Academy of Sciences, Beijing 100049, People's Republic of China

^{*} Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, East China University of Science and Technology, Shanghai 200237, People's Republic of China

Entries	Samples	BET surface area /m ² g ⁻¹	Mean pore diameter /nm	Pore volume $/cm^3g^{-1}$
1	LSI-600	42.4	19.1	0.17
2	LSCA-10	15.5	17.1	0.07
3	LSCA-30	15.7	17.0	0.11
4	CT-450	12.8	17.2	0.13
5	Amberlyst 15	44.5	40.0	0.36
6	Amberlist IR 120	0.8	-	< 0.001
7	Silica gel	337.8	32.9	0.91
8	MCM-41	800	3.5	0.70
9	Quartz	1.2	-	< 0.003

Table S1. T	The physical	properties	of supports.
-------------	--------------	------------	--------------

Figure S1. The steric confinement effect of the supports: (a) MCM-41 as the support (MCM-41 with an average pore size of 3.5 nm); (b) Silica gel and macro porous resins with an average pore size of 15-33 nm as support.

Nitrogen adsorption isotherms of resins and the Pd-P-OP/Resin catalyst.

Figure S2. N₂ sorption isotherms of (\blacksquare) LSI-600 resin, (\bullet) fresh Pd-P-OP/LSI-600 catalyst and (\blacktriangle) the third recycled Pd-P-OP/LSI-600 catalyst.

Figure S3. N₂ sorption isotherms of (\blacksquare) LSCA-10 resin and (\bullet) fresh Pd-P-OP/LSCA-10 catalyst.

Figure S4. N₂ sorption isotherms of (\blacksquare) LSCA-30 resin and (\bullet) Pd-P-OP/LSCA-30 catalyst.

Figure S5. N₂ sorption isotherms of (\blacksquare) CT-450 resin and (\bullet) Pd-P-OP/CT-450 catalyst.

Figure S6. N_2 sorption isotherms of (**•**) Amberlyst 15 resin and (•) Pd-P-OP/Amberlyst 15 catalyst.

Figure S7. N_2 sorption isotherms of (**•**) Amberlist IR 120 resin and (•) Pd-P-OP/Amberlist IR 120 catalyst.

10

Methyl 2-(4-bromophenyl)propanoate:

COOCH₃ ¹H NMR (400 MHz, CDCl₃) ¹H NMR (400 MHz, CDCl₃) δ 7.44 (d, J=8.2, 2H), 7.18 (d, J=8.2, 2H), 3.69 (dd, J=7.16, 1H), 3.69(s, OCH₃, 3H), 1.48 (d, J=7.2, CH₃, 3H).¹³C NMR (101 MHz, cdcl₃) δ 174.6, 139.6,131.9, 129.4, 121.2, 52.3, 45.0, 18.6. GC MS: MS (EI): m/z calcd. for [C₁₀H₁₁O₂Br]: 242.9 found 242.0.

¹H NMR (upper) and ¹³C NMR (bottom)

Methyl 2-(4-tert-butylphenyl)propanoate:

¹H NMR (400 MHz, CDCl₃) δ 7.30 (d, *J* = 8.3 Hz, 2H), 7.18 (d, *J* = 8.3 Hz, 2H), 3.68 (dd, *J* = 14.3, 7.2 Hz, 1H), 3.61 (s, 3H), 1.45 (d, *J* = 7.2 Hz, 3H), 1.27 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 175.3, 150.1, 137.6, 127.2, 125. 7, 52.1, 45.0, 34.6, 31.5, 18.7. GC MS: MS (EI): m/z calcd. for [C₁₄H₂₀O₂]: 220.1, found 220.2.

Methyl 2-*p*-tolylpropanoate:

¹H NMR (400 MHz, CDCl₃) δ 7.15 (d, *J* = 7.9 Hz, 2H), 7.10 (d, *J* = 7.9 Hz, 2H), 3.66 (dd, *J* = 13.2, 6.0 Hz, 1H), 3.61 (s, 3H), 2.29 (s, 3H), 1.45 (d, *J* = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 175.3, 137.7, 136. 9, 129. 5, 127. 4, 52.1, 45.1, 21.2, 18.8. GC MS: MS (EI): m/z calcd. for [C₁₁H₁₄O₂]: 178.1, found 178.1.

¹H NMR (upper) and ¹³C NMR (bottom)

Methyl 3-p-tolylbutanoate^[1]:

¹H NMR (400 MHz, CDCl₃) δ 7.25–7.10 (m, 5H), 3.54 (s, 3H), 3.21 (m, *J* = 14.5, 7.2 Hz, 1H), 2.56 (dd, *J* = 15.2, 6.8 Hz, 1H), 2.47

(dd, J=15.1, 8.2 Hz, 1H), 1.23 (d, J = 7.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.9, 145.8, 128.6, 126.8, 126.52, 51.6, 42.9, 36.6, 21.9. GC MS: MS (EI): m/z calcd. for [C₁₁H₁₄O₂]:178.1, found 178.1.

¹H NMR (upper) and ¹³C NMR (bottom)

Electronic Supplementary Material (ESI) for Catalysis Science & Technology This journal is C The Royal Society of Chemistry 2014

Reference

[1] T. M. Konrad, J. T. Durrani, C. J. Cobley, M. L. Clarke. *Chem. Commun.*, 2013, 49, 3306.