Supporting Information

Developing an efficient catalyst for controlled oxidation of small alkanes under ambient conditions

Penumaka Nagababu, Steve S.-F. Yu, Suman Maji, Ravirala Ramu, and Sunney I. Chan*

Academia Sinica, Institute of Chemistry, 128 Sec. 2, Academia Road, Nankang, Taipei 11529, Taiwan. Email: <u>sunneychan@yahoo.com</u>; Fax: +886-2-2783-1237; Tel: +886-2-2789-8654

Table of contents

Method Summary GC Analysis of Oxidation Products Control Experiments

-

Figures S1-S3

Tables S1

Methods Summary

The synthesis and spectroscopic characterization of the **7-N-Etppz** ligand as well as the preparation of the $[Cu^{I}Cu^{I}Cu^{I}(7-N-Etppz)](ClO_{4})$ complex have been described earlier.¹ We have also followed the oxidation of the $Cu^{I}Cu^{I}Cu^{I}$ complex by O₂ in the absence of substrate by UV-visible spectroscopy. The spectral results support the formation of the $[Cu^{II}Cu^{II}(\mu-O)Cu^{II}(7-N-Etppz)](ClO_{4})_{2}$ species (Figure S1) as has been reported previously.²⁻⁴

As the reduced tricopper complex is extremely air sensitive, it is necessary to perform the substrate oxidation experiments under a purified nitrogen atmosphere inside the glove box. The reaction mixture is vigorously stirred with a magnetic stirring bar for various times up to 1 h using different sample bottles. At designated intervals, a sample bottle is removed from the glove box for identification of the products and determination of product yields by GC. 3 μ l of nitrobenzene is added to the solution to provide an internal stranded (IS) for quantitation of the products (Figure S2).

References:

 S. I. Chan, Y. J. Lu, P. Nagababu, S. Maji, M. C. Hung, M. M. Lee, I. J. Hsu, P. D.
Minh, J. C. H. Lai, K. Y. Ng, S. Ramalingam, S. S.-F. Yu and M. K. Chan, *Angew. Chem. Int. Ed.*, 2013, **52**, 3731–3735.
S. I. Chan, C. Y.-C. Chien, C. S.-C. Yu, P. Nagababu, S. Maji and P. P.-Y. Chen, *J. Catal.*, 2012, **293**, 186–194.
P. P.-Y. Chen, R. B.-G. Yang, J. C.-M. Lee and S. I. Chan, *Proc. Nat. Acad. Sci. USA*, 2007, **104**, 14570–14575.
P. Nagababu, S. Maji, M. P. Kumar, P. P.-Y. Chen, S. S.-F. Yu and S. I. Chan, *Adv. Synth. Catal.* 2012, **354**, 3275–3282.

GC Analysis of Oxidation Products

Before product analysis of the solutions by GC after hydrocarbon oxidation, the solutions were passed through a flash chromatography column (silica gel) to remove the metal

complexes. GC analyses were performed on a HP6890 plus equipped with a flame ionization detector. For gas substrates (methane, ethane, propane and *n*-butane), the conditions were as follows: HP5 column (60 m × 0.25 mm × 0.25 mm film thickness); carrier gas, nitrogen at a flow rate of 1 ml/min; oven temperature, isothermal at 30 °C; pulsed splitless injection at 280 °C, (25.0 psi for 30 sec and 17.5 psi for the rest of the acquisition time); and FID detector at 300 °C. For liquid substrates (*n*-pentane, *n*-hexane, cyclohexane and cyclohexene), the conditions were as follows: HP5 column (60 m × 0.25 mm × 0.25 mm × 0.25 mm × 0.25 mm film thickness); carrier gas, nitrogen at a flow rate of 1 ml/min; oven temperature, isothermal at 120 °C; splitless injection at 280 °C, (36.9 psi for 30 sec and 10 psi for the rest of the acquisition time); and FID detector at 300 °C.

Control Experiments

1. Control experiments were performed according to the procedures described in the text without the ligand **7-N-Etppz** but with the complex [Cu(MeCN)₄](ClO₄). No oxidation of methane or ethane was observed. Only very low reactivity was observed with the remaining substrates. (Table S1 and Figure S3)

2. Control experiments were also performed with H_2O_2 alone, without either the ligand 7-N-Etppz or the complex [Cu(MeCN)₄](ClO₄). No oxidation of substrate was evident. (Table S1).

Figure S1 | Spectral changes observed in the UV-visible region upon mixing of O_2 -saturated MeCN with a 0.5 mM solution of $[Cu^ICu^ICu^I(7-N-Etppz)](ClO_4)$ (total volume 3 ml) at room temperature.

Electronic Supplementary Material (ESI) for Catalysis Science & Technology This journal is The Royal Society of Chemistry 2013

Figure S2 | GC-chromatograms showing the oxidation of different hydrocarbon substrates by H_2O_2 mediated by 22.7 µmoles (1 equiv.) of $[Cu^ICu^ICu^I(7-N-Etppz)](ClO_4)$ (A) Conversion of methane to methanol ($t_{\rm R}$: 5.54 min) in the presence of 20 equiv. of H₂O₂; (**B**) ethane to ethanol ($t_{\rm R}$: 5.6 min) in the presence of 100 equiv. of H₂O₂; (C) propane to 2-propanol (t_R : 6.04 min) in the presence of 100 equiv. of H₂O₂; EtCN is used as the solvent in this experiment due to interference between the product (2-propanol) peak and the solvent peak with MeCN; time course of the oxidation is shown in *inset*: 4, after 5 min; 3, after 10 min; 2, after 20 min; and 1, after 30 min; (D) *n*-butane to 2-butanol (t_R : 8.39 min), 2-butanone ($t_{\rm R}$: 8.55 min), and 2,3-butanediol ($t_{\rm R}$: 7.65 min) in the presence of 100 equiv. of H_2O_2 ; (E) *n*-pentane to 2-pentanol (t_R : 3.47 min) and 2-pentanone (t_R : 3.32 min) in the presence of 200 equiv. of H_2O_2 ; (F) *n*-hexane to 2-hexanol (t_R : 3.8 min) and 2-hexanone (t_R : 3.56 min) in the presence of 200 equiv. of H_2O_2 ; (G) cyclohexane to cyclohexanol (t_R : 4.1 min) and cyclohexanone (t_R : 4.2 min) in the presence of 200 equiv. of H₂O₂; and (**H**) cyclohexene to cyclohexene oxide (t_R : 3.94 min), cyclohexenol (t_R : 4.09 min), and cyclohexenone (t_R : 4.48 min) in the presence of 200 equiv. of H₂O₂. Quantification of the products is determined by co-injection of a nitrobenzene ($C_6H_6NO_2$) internal standard (IS).

Figure S3 | Control experiments on the oxidation of methane. 1: methanol $(2.4 \times 10^{-5} \text{ mole})$ in MeCN (3 ml); **2**: a reaction mixture containing initially 1 equiv. (22.7 µmoles) of [Cu^ICu^ICu^I(**7-N-Etppz**)](ClO₄), 4.17 × 10⁻³ moles of methane, and 20 equiv. of H₂O₂ in MeCN (3 ml) after 1 h; **3**: a reaction mixture containing initially 1 equiv. of [Cu(**MeCN**)₄]ClO₄, 4.17 × 10⁻³ moles of methane, and 20 equiv. of H₂O₂ in MeCN (3 ml) after 1 h; and **4**: 4.17 × 10⁻³ moles of methane and 20 equiv. of H₂O₂ in MeCN (3 ml) after 1 h of incubation.

Table S1. Control experiments on the oxidation of hydrocarbons

Conditions	Substrate	TON
$Cu^{I}[(CH_{3}CN)_{4}](ClO_{4}) (10 \text{ mg}) + H_{2}O_{2}$	methane	×× ^a
(100 equiv.) in MeCN (3 ml) only	ethane	×× ^a
(without the 7-N-Etppz ligand)	propane	1
1 h incubation	<i>n</i> -butane,	1
	<i>n</i> -pentane	1.3
	<i>n</i> -hexane	1.7
	cyclohexane	2.2
	cyclohexene	2.6
H_2O_2 (100 equiv.) in MeCN (3 ml) only	methane, ethane, propane and <i>n</i> -butane,	×× ^a
(without the Cu ^I Cu ^I Cu ^I (7-N-Etppz)	<i>n</i> -pentane, <i>n</i> -hexane, cyclohexane and	
complex)	cyclohexene	
1 h incubation		

^a No products detected.