Supporting Information

⁵ A modelling in catalytically oxidative decomposition of carbon tetrachloride on ZnS nanocluster using density functional theory

Wei Zhu^a, Xiao-Qiang Liu^a, Xian-Deng Hou^{a,b}, Jun-Xian Chen^c, Chan Kyung Kim^d, Kai-Lai Xu^a*

10

Table S1 Mulliken atomic charges for oxygen molecule adsorbed on the $(ZnS)_n$ clusters

Table S2 Summary of the energies for the reaction of CCl_4 and O_2 on the $(ZnS)_{12}$ cluster

Table S3 Summary of the energies for the reaction of CCl₄ and O₂ without the (ZnS)₁₂ cluster

Figure S1 The highest occupied molecular orbital (HOMO) of (ZnS)_n nanoclusters

15 Figure S2 HOMO of $(ZnS)_n$ nanoclusters when oxygen molecule adsorbed on them.

Figure S3 Structures of CCl4 adsorbed on the (ZnS)_n nanoclusters.

Figure S4 Mulliken atomic charges of (ZnS)₁₂, the separated adsorption and the co-adsorption of O₂, CCl₄

Figure S5 Adsorption energies (kcal/mol) and structures for Cl₂O, CO, COCl₂, and ClOOCCl₃. Co-adsorption energies

(kcal/mol) for COCl₂, Cl₂O and CO, Cl₂, Cl₂O

20

Electronic Supplementary Material (ESI) for Catalysis Science & Technology This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2014

Table S1 Mulliken atomic charges for oxygen molecule adsorbed on the (ZnS)_n clusters

	6	7	11	12	1	3	1	5	16	17	25	26
01	-0.028	-0.070	-0.013	-0.018	-0.121	-0.063	-0.174	-0.016	-0.009	-0.069	-0.101	-0.019
O2	-0.034	-0.133	-0.070	-0.087	-0.131	-0.124	-0.274	-0.064	-0.010	-0.171	-0.127	-0.077

5

-

Table S2 Summary of the energies for the reaction of CCl_4 and O_2 on the $(ZnS)_{12}$ cluster^{*a*}

Reaction step	ΔE_0	ΔΗ	ΔG	
-		(298.15K)	(298.15K)	
$A+O_2+CCl_4 \rightarrow B$	-18.42	-17.64	1.52	
B→C-TS	26.82	27.47	26.33	
B→D	19.10	20.01	21.18	
D→E-TS	3.91	3.14	3.99	
D→F	-75.52	-76.13	-74.14	
F→G-TS	4.37	4.13	5.16	
F→H	-44.46	-44.44	-45.50	
H→I-TS	28.08	28.49	27.36	
H→J	11.45	12.29	10.50	
J→K-TS	38.43	37.70	39.28	
J→L	35.76	30.93	29.30	
L→M-TS	6.72	8.07	5.56	
L→N	-96.16	-92.43	-94.52	

^{*a*} All the energies are in kcal/mol. ΔE_0 is the zero-point-corrected energy, ΔH and ΔG are the changes of the enthalpies and Gibbs free energies for the process specified.

Electronic Supplementary Material (ESI) for Catalysis Science & Technology This journal is C The Royal Society of Chemistry 2014

Table S3 Summary of the energies for the reaction of CCl₄ and O₂ without the (ZnS)₁₂ cluster^b

Reaction step	ΔE_0	ΔH	ΔG	
_		(298.15K)	(298.15K)	
a→b-TS1	37.19	37.76	38.00	
a→c	30.65	31.95	31.49	
c→d-TS2	1.39	0.68	-0.22	
c→e	-38.58	-38.57	-35.47	
e→f-TS3	10.99	10.06	9.23	
e→g	-26.79	-28.00	-29.70	
g→h-TS4	81.32	80.86	77.49	
g→i	39.43	38.78	32.26	
i→j-TS5	10.65	13.42	9.38	
i→k	-93.72	-90.24	-93.02	

^b All the energies are in kcal/mol. ΔE_0 is the zero-point-corrected energy, ΔH and ΔG are the changes of the enthalpies and Gibbs free energies for the process specified.

Electronic Supplementary Material (ESI) for Catalysis Science & Technology This journal is The Royal Society of Chemistry 2014

Figure S3 Structures of CCl_4 adsorbed on the $(ZnS)_n$ nanoclusters.

Figure S4 Mulliken atomic charges of (ZnS)₁₂, the separated adsorption and the co-adsorption of O₂, CCl₄.

Figure S5 Adsorption energies (kcal/mol) and structures for Cl₂O, CO, COCl₂, and ClOOCCl₃. Co-adsorption energies (kcal/mol) for COCl₂, Cl₂O and CO, Cl₂, Cl₂O