# Synthesis, characterization and enhanced visible light photocatalytic activity of Bi<sub>2</sub>MoO<sub>6</sub>/Zn-Al layered double hydroxide hierarchical

### heterostructures

Haiping Li<sup>a</sup>, Quanhua Deng<sup>b</sup>, Jingyi Liu<sup>c</sup>, Wanguo Hou<sup>b</sup>\*, Na Du<sup>b</sup>, Renjie Zhang<sup>b</sup>, Xutang Tao<sup>a</sup>

<sup>a</sup>State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P.R.

China;

<sup>b</sup> Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), Shandong University, Jinan 250100, P.R. China;

<sup>c</sup>Environment Research Institute, Shandong University, Jinan 250100, P. R. China



Fig. S1 Image of photocatalytic reaction equipment (XPA-7, Xujiang

Electromechanical Plant, China)

## Details for the preparation of mechanically mixed Bi<sub>2</sub>MO<sub>6</sub>/Zn-Al LDH (5.5%) composite and N doped TiO2 photocatalysts

Mechanically mixed  $Bi_2MO_6/Zn$ -Al LDH (5.5%) composite was prepared by grinding finely the mixture containing 0.200 g  $Bi_2MO_6$  and 0.011 g Zn-Al LDH for 10 min.

N doped TiO2 photocatalyst was prepared by means of solid-state reaction method using urea as a nitrogen source<sup>1</sup>. P25 TiO<sub>2</sub> (1.0 g) was finely milled with urea (2.0 g) and the mixture was heated at 400 °C for 2 h. After cooling to the room temperature, the N doped TiO<sub>2</sub> photocatalyst was obtained.

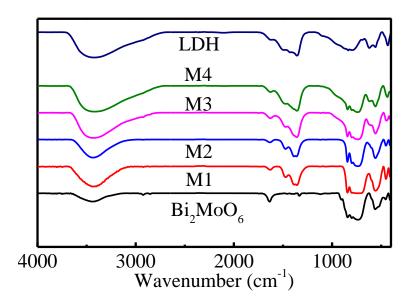



Fig. S2. FT-IR spectra of Bi<sub>2</sub>MoO<sub>6</sub>, Zn-Al LDH and their composites M1–M4.

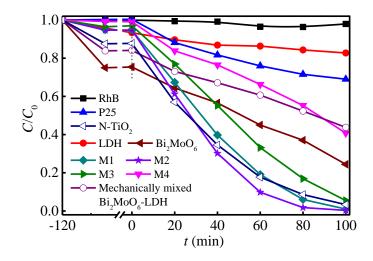
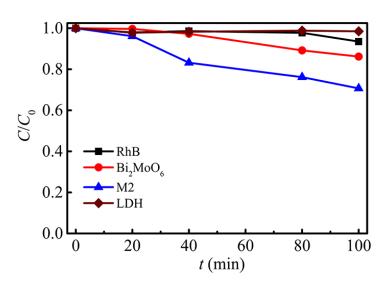




Fig. S3. Photocatalytic degradation of RhB, over various photocatalysts after different



reaction time.

Fig. S4. TOC decrease of RhB solutions containing various photocatalysts.

### Determination of $E_{\rm g}$ for as-prepared photocatalysts

 $E_g$  values were determined from the absorption spectra using the equation  $\alpha hv = A(hv - E_g)^{n/2}$ , where  $\alpha$ , v and A are the absorption coefficient, light frequency, and proportionality constant, respectively. n was confirmed to be 1 by Parida's method <sup>2</sup>. Then the equation could be written as  $(\alpha hv)^2 = A(hv - E_g)$ . It could be noticed that the plot  $(\alpha hv)^2 \sim hv$  is linear, as shown by the linear parts in the inset of Fig. 8. The

intersections of the extension lines of the linear parts and abscissa axis, where the  $(\alpha hv)^2$  values are zero, are  $E_g$  values of photocatalysts, as shown by the dash lines in the inset of Fig. 8. From above equation, it can be seen that only when hv is equal to  $E_g$ , the value of  $(\alpha hv)^2$  is 0, or the calculated  $E_g$  value for every photocatalyst is unique.

### Potential determination of top of VB and bottom of CB for as-prepared $Bi_2MoO_6$ and Zn-Al LDH

The conduction band ( $E_{CB}$ ) and valence band ( $E_{VB}$ ) positions of the prepared samples are determined through the equations:  $E_{VB} = X - E^e + 0.5E_g$  and  $E_{CB} = E_{VB} - E_g$ , where X is the Mulliken's electronegativity that is the geometric mean of the electronegativity of the constituent atoms (the electronegativity of an atom is the arithmetic mean of the atomic electron affinity and the first ionization energy),  $E^e$  is the energy of free electrons on the hydrogen scale (4.50 eV), and  $E_g$  is the band gap<sup>3</sup>.

The X and  $E_g$  values of Bi<sub>2</sub>MoO<sub>6</sub> are 5.55 eV <sup>3</sup> and 2.72 eV, respectively. Then  $E_{VB}$  and  $E_{CB}$  are calculated as follows:

 $E_{\rm VB} = 5.55 \text{ eV} - 4.50 \text{ eV} + 0.5 \text{*} 2.72 \text{ eV} = 2.41 \text{ eV}$ 

 $E_{\rm CB} = 2.41 \text{ eV} - 2.72 \text{ eV} = -0.31 \text{ eV}.$ 

The  $E_g$  value of  $[Zn_{0.66}Al_{0.34}(OH)_2](CO_3)_{0.17} \cdot 0.87H_2O$  is 3.07 eV. The electronegativity of Zn, Al, O, H, and C is 4.45 eV, 3.23 eV, 7.54 eV, 7.18 eV and 6.27 eV, respectively. Then the X,  $E_{VB}$  and  $E_{CB}$  values of  $[Zn_{0.66}Al_{0.34}(OH)_2](CO_3)_{0.17}$  are calculated as follows:

$$X = \sqrt[5.68]{4.45^{0.66} 3.23^{0.34} \cdot 7.54^{2.51} \cdot 7.18^2 \cdot 6.27^{0.17}} = 6.59 \text{ eV}$$

$$E_{\rm VB} = 6.59 \text{ eV} - 4.50 \text{ eV} + 0.5*3.07 \text{ eV} = 3.62 \text{ eV}$$

$$E_{\rm CB} = 3.62 \text{ eV} - 3.07 \text{ eV} = 0.55 \text{ eV}$$

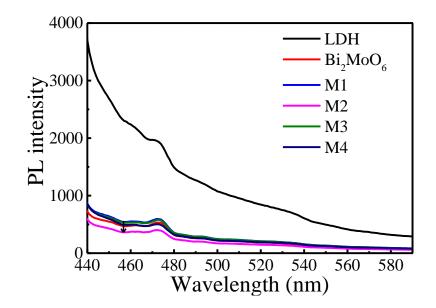



Fig. S5. PL spectra of Zn-Al LDH, Bi<sub>2</sub>MoO<sub>6</sub> and their composites M1–M4.

| Table S1                         |           |           |        |                                                |         |
|----------------------------------|-----------|-----------|--------|------------------------------------------------|---------|
|                                  | Content   | Content   | Zn/Al  |                                                | LDH     |
| Samples                          | Content   | 001110111 | ZII/AI | LDH formula                                    | content |
|                                  | of Zn (%) | of Al (%) | ratio  |                                                | (%)     |
| Bi <sub>2</sub> MoO <sub>6</sub> | 0         | 0         |        |                                                | 0       |
| M1                               | 2.39      | 0.50      | 1.98   | $[Zn_{0.66}Al_{0.34}(OH)_2](CO_3^{2-})_{0.17}$ | 5.35    |
| M2                               | 4.53      | 0.95      | 1.97   | $[Zn_{0.66}Al_{0.34}(OH)_2](CO_3^{2-})_{0.17}$ | 10.14   |
| M3                               | 11.15     | 2.30      | 2.00   | $[Zn_{0.67}Al_{0.33}(OH)_2](CO_3^{2-})_{0.16}$ | 24.50   |
| M4                               | 18.73     | 3.92      | 1.97   | $[Zn_{0.66}Al_{0.34}(OH)_2](CO_3^{2-})_{0.17}$ | 41.90   |
| LDH                              | 40.68     | 8.35      | 2.01   | $[Zn_{0.67}Al_{0.33}(OH)_2](CO_3^{2-})_{0.16}$ | 89.41   |

1. D. Mitoraj and H. Kisch, *Angew Chem Int Edit*, 2008, **47**, 9975-9978.

2. L. Mohapatra, K. Parida and M. Satpathy, J Phys Chem C, 2012, 116, 13063-13070.

Electronic Supplementary Material (ESI) for Catalysis Science & Technology This journal is C The Royal Society of Chemistry 2014

3. Y.-S. Xu, Z.-J. Zhang and W.-D. Zhang, *Mater Res Bull*, 2013, **48**, 1420-1427.