Electronic Supplementary Information

A common feature of H₂-assisted HC-SCR over Ag/Al₂O₃

Yunbo Yu, Hong He*, Xiuli Zhang and Hua Deng

Time (min)

- 100x10³ 100x10³ (A) C₂H₂ + O₂ (B) $C_2H_2 + O_2 + H_2$ 80 80 N₂ and / co, H_2O 60 H_2O 60 Intensity Intensity CH3COCH3 CH₃COCH₃ CH₃CHO CH₃CHO 423 K 423 K 40 40 -473 K 473 K 523 K 523 K 573 K 573 K 20 20 623 K 623 K 673 K 673 K 0 -0 -Т 5 10 15 20 5 10 15 20 Time (min) Time (min) 100x10³ 100x10³ 002 (D) $C_2H_4 + O_2 + H_2$ (C) $C_2H_4 + O_2$ and CO H₂O 80 80 H₂O N Intensity 60 60 -Intensity 423 K 423 K 473 K 473 K 523 K 40 40 523 K 573 K 573 K 623 K 623 K 673 K 673 K 20 20 723 K 723 K 773 K 773 K 0 0 15 0 5 10 15 20 5 10 20
- 1. GC–MS analysis

Time (min)

Fig. S1. GC–MS analysis during the oxidation of hydrocarbons without or with H_2 over Ag/Al_2O_3

2. In situ DRIFTS studies

Fig. S2. In situ DRIFTS spectra of Ag/Al_2O_3 during the oxidation of hydrocarbons without or with H_2 (A–J), and during the reaction between H_2 and O_2 (K).

Fig. S3. The deconvolution and curve fitting results for DRIFTS spectra during C_2H_2 oxidation at 523 K (A) and C_3H_6 oxidation in the presence of H_2 at 473 K over Ag/Al₂O₃ (B).

6

Fig. S4. In situ DRIFTS spectra of Ag/Al_2O_3 during the NOx reduction by different hydrocarbons without or with H_2 .

As for CH₄-SCR over Ag/Al₂O₃, monodentate nitrate (1550 and 1251 cm⁻¹), bidentate nitrate (1589 and 1306 cm⁻¹), and bridging nitrate (1612 cm⁻¹) were clearly observed within the temperature range of 473-823 K while the surface species due to the partial oxidation of CH₄ was hardly observed (Fig. S4A). ^{1,2} Trends such as these were also obvious when H₂ was co-fed into the flow of CH₄ + O₂ + NO (Fig. S4B).

During the NOx reduction by C_2H_2 (Fig. S4C), bidentate nitrate (1589 and 1304 cm⁻¹), and bridging nitrate (1614 cm⁻¹) were also observed. Quite different from CH₄-SCR, large amounts of enolic species (1635 and 1336 cm⁻¹) and acetate (1579 and 1464 cm⁻¹) appeared during the NOx reduction by C_2H_2 . As temperature increasing from 423 K to 623 K, decreased intensities of nitrates and enolic species were always accompanied by an increase in the intensity of –NCO species (2229 cm⁻¹) ³, during which a gradually increased intensity of acetate peak was clearly observed at 1464 cm⁻¹. In addition, a peak at 2167 cm⁻¹ can be assigned to surface –CN.³ Similar to the partial oxidation of C_2H_2 (Fig. S2C), the appearance of peak at 1676 cm⁻¹ confirmed the formation of surface acetone. All the surface species described above were clearly observed during the H₂-assisted C_2H_2 –SCR (Fig. S4D), while a much lower intensity of –NCO peak appeared at above 523 K if compared

with Fig. S4C. Keeping the activity measurements (Fig. 1B) in mind, it may suggest that only a fraction of all the –NCO observed by DRIFTS is reactive and potential intermediates for NOx reduction at a given temperature.⁴

As for C₂H₄–SCR (Fig. S4E), C₃H₆–SCR (Fig. S4G), and C₃H₈–SCR (Fig. S4I), three kinds of nitrates described above were clearly observed within the whole temperature range. In contrast, the oxygenated species due to the partial oxidation of C₂H₄, C₃H₆, and C₃H₈, such as acetate and enolic species were hardly observed at low temperatures. These trends were more pronounced during the NOx reduction by C₂H₄ and C₃H₈. In the two cases, no peak due to enolic species can be observed within the whole temperature region, and the peak of 1458–1460 cm⁻¹ assignable to acetate did not appear at temperature below 573 K. When H₂ was introduced into the feeding, however, the enolic species (1633–1639 cm⁻¹) with strong intensity appeared even the temperature as low as 423 K (Figs. S4F, S4H, and S4J). Also, the formation of acetate was triggered by H₂ addition at temperature of 423 K on which the peak at around 1458–1460 cm⁻¹ can be observed clearly.

References

- P. Sazama, L. Čapek, H. Drobná, Z. Sobalík, J. Dědeček, K. Arve and B. Wichterlová, J. Catal., 2005, 232, 302.
- 2. S. Kameoka, Y. Ukisu and T. Miyadera, Phys. Chem. Chem. Phys., 2000, 2, 367.
- S. Tamm, H. H. Ingelsten and A. E. C. Palmqvist, J. Catal., 2008, 255, 304; F. Thibault-Starzyk, E. Seguin, S. Thomas, M. Daturi, H. Arnolds and D. A. King, Science, 2009, 324, 1048.
- S. Chansai, R. Burch, C. Hardacre, J. Breen and F. Meunier, *J. Catal.*, 2010, 276, 49.