ELECTRONIC SUPPLEMENTARY INFORMATION:

Easily accessible bifunctional Zn(salpyr) catalysts for the formation of organic carbonates

C. Martín,^a C. J. Whiteoak,^a E. Martin,^a M. Martínez Belmonte,^a E. C. Escudero-Adán^a and A. W. Kleij^{a,b*}

^{*a*} Institute of Chemical Research of Catalonia (ICIQ), Av. Països Catalans 16, 43007 – Tarragona, Spain. E-mail: akleij@iciq.es

^b Catalan Institute for Research and Advanced Studies (ICREA), Pg. Lluis Companys 23, 08010 Barcelona, Spain.

Contents:

NMR spectra and mass spectra of new complexes:	S2
Spectroscopic data and NMR/IR spectra of cyclic carbonates 10a-10l:	812
Additional IR, ¹ H and ¹³ C NMR spectra of products from Figure 4:	S25
Further X-ray crystallographic images of complexes 4 and 6	S27
¹ H NMR comparison between Zn(salpyr) 1 and its N-methylated form 6:	S29

NMR SPECTRA AND MASS SPECTRA OF NEW COMPLEXES:

Figure 1. ¹H NMR spectrum of monoimine salt 3 in CDCl₃ (500 MHz) at RT.

Figure 2. ¹³C NMR spectrum of monoimine salt 3 in CDCl₃ (126 MHz) at RT.

Figure 3. Mass spectrum (ESI+, MeOH) of monoimine salt 3.

Figure 4. ¹H NMR spectrum of nonsymmetrical Zn(salpyr) complex **4** in DMSO-*d*₆ (500 MHz) at RT.

Figure 5. ¹³C NMR spectrum of nonsymmetrical Zn(salpyr) complex 4 in DMSO-*d*₆ (126 MHz) at RT.

Figure 6. Mass spectrum (MALDI+, pyrene) of nonsymmetrical Zn(salpyr) complex 4.

Figure 7. ¹H NMR spectrum of alkylated Zn(salpyr) complex 7 in DMSO-*d*₆ (500 MHz) at RT.

Figure 9. Mass spectrum (MALDI(+), dctb) of alkylated Zn(salpyr) complex 7.

Figure 10. ¹H NMR spectrum of benzylated Zn(salpyr) complex **8** in DMSO-*d*₆ (500 MHz) at RT.

Figure 12. MALDI(+) mass spectra (dctb) of benzylated Zn(salpyr) complex 8.

Figure 13. ¹H NMR spectrum of alkylated Ni(salpyr) complex **9** in DMSO-*d*₆ (500 MHz) at RT.

Figure 15. MALDI(+) mass spectrum (dctb) of alkylated Ni(salpyr) complex 9.

SPECTROSCOPIC DATA AND NMR/IR SPECTRA OF CYCLIC CARBONATES 10a-10l:

[10a]: 4-butyl-1,3-dioxolan-2-one¹

¹H NMR (300 MHz, CDCl₃): δ 4.76 – 4.66 (m, 1H), 4.53 (dd, ²*J*_{*HH*} = 8.2, ³*J*_{*HH*} = 8.0 Hz, 1H), 4.08 (dd, ²*J*_{*HH*} = 8.3, ³*J*_{*HH*} = 7.3 Hz, 1H), 1.90 – 1.61 (m, 2H), 1.53 – 1.30 (m, 4H), 0.94 (t, ³*J*_{*HH*} = 7.1 Hz, 3H). IR Neat: 1786 cm⁻¹ (C=O).

[10b]: 4-(but-3-en-1-yl)-1,3-dioxolan-2-one²

¹H NMR (300 MHz, CDCl₃): δ 5.80 (m,1H), 5.10 (m, 1H), 5.06 (m, 1H), 4.74 (m, 1H), 4.54 (dd, ²*J*_{*HH*} = 8.6, ³*J*_{*HH*} = 8.6 Hz, 1H), 4.09 (dd, ²*J*_{*HH*} = 8.4, ³*J*_{*HH*} = 7.2 Hz, 1H), 2.35 – 2.12 (m, 2H), 2.02 – 1.88 (m, 1H), 1.86 – 1.72 (m, 1H). IR Neat: 1784 cm⁻¹ (C=O).

[10c]: 4-phenyl-1,3-dioxolan-2-one³

¹H NMR (300 MHz, CDCl₃): δ 7.50 – 7.42 (m, 3H), 7.40 – 7.34 (m, 2H), 5.68 (dd, ³*J*_{*HH*} = 8.3, ²*J*_{*HH*} = 7.5 Hz, 1H), 4.82 (dd, ²*J*_{*HH*} = 8.5, ³*J*_{*HH*} = 8.2 Hz, 1H), 4.36 (dd, ²*J*_{*HH*} = 8.6, ³*J*_{*HH*} = 7.9 Hz, 1H). IR Neat: 1775 cm⁻¹ (C=O).

¹ J.-L. Jiang, F. Gao, R. Hua, X. Qiu, J. Org. Chem., 2005, 70, 381.

² Z. Zhu, A. G. Einset, C.-Y. Yang, W.-Y. Chen, G. E. Wnek, *Macromolecules*, 1994, 27, 4076.

³ Y. Ren, J.-J. Shim, *ChemCatChem*, 2013, **5**, 1344.

[10d]: 4-chloromethyl-1,3-dioxolan-2-one⁴

¹H NMR (300 MHz, CDCl₃): δ 5.02 – 4.94 (m, 1H), 4.61 (dd, ²*J*_{*HH*} = 8.9, ³*J*_{*HH*} = 8.6 Hz, 1H), 4.43 (dd, ²*J*_{*HH*} = 8.8, ³*J*_{*HH*} = 8.8 Hz, 1H), 3.83 – 3.71 (m, 1H). IR Neat: 1780 cm⁻¹ (C=O).

[10e]: 4-butoxymethyl-1,3-dioxolan-2-one³

¹H NMR (300 MHz, CDCl₃): δ 4.86 – 4.77 (m, 1H), 4.49 (dd, ²*J*_{*HH*} = 8.4, ³*J*_{*HH*} = 8.1 Hz, 1H), 4.39 (dd, ²*J*_{*HH*} = 8.4, ³*J*_{*HH*} = 8.4 Hz, 1H), 3.70 – 3.58 (m, 2H), 3.52 (t, ³*J*_{*HH*} = 6.4 Hz, 2H), 1.65 – 1.51 (m, 2H), 1.37 (m, 2H), 0.92 (t, ³*J*_{*HH*} = 7.4 Hz, 3H). IR Neat: 1787 cm⁻¹ (C=O).

[10g]: 4-(hydroxymethyl)-1,3-dioxolan-2-one⁵

¹H NMR (300 MHz, DMSO): $\delta 5.25$ (t, ³ J_{HH} = 5.6 Hz, 1H), 4.83 – 4.76 (m, 1H), 4.49 (dd, ² J_{HH} = 8.3, ³ J_{HH} = 8.2 Hz, 1H), 4.28 (dd, ² J_{HH} = 8.2, ³ J_{HH} = 5.9 Hz, 1H), 3.66 (ddd, ² J_{HH} = 12.6, ³ J_{HH} = 5.3, ³ J_{HH} = 3.0 Hz, 1H), 3.50 (ddd, ² J_{HH} = 12.7, ³ J_{HH} = 5.4, ³ J_{HH} = 3.4 Hz, 1H). IR Neat: 1766 cm⁻¹ (C=O).

[10h]: 4,5-dimethyl-1,3-dioxolan-2-one⁶

¹H NMR (300 MHz, CDCl₃): δ 4.38 – 4.27 (m, 2H), 1.45 (d, ³*J*_{*HH*} = 5.9 Hz, 6H). IR Neat: 1796 cm⁻¹ (C=O).

[10i]: 4-((prop-2-yn-1-yloxy)methyl)-1,3-dioxolan-2-one⁷

¹H NMR (300 MHz, CDCl₃): δ 4.91 – 4.82 (m, 1H), 4.52 (dd, ²*J*_{*HH*} = 8.4, ³*J*_{*HH*} = 8.4 Hz, 1H), 4.40 (dd, ²*J*_{*HH*} = 8.3, ³*J*_{*HH*} = 6.1 Hz, 1H), 4.27 (dd, ²*J*_{*HH*} = 15.9, ⁴*J*_{*HH*} = 2.4 Hz, 1H), 4.20 (dd, ²*J*_{*HH*} = 15.9, ⁴*J*_{*HH*} = 2.4 Hz, 1H), 3.80 (dd, ²*J*_{*HH*} = 10.7, ³*J*_{*HH*} = 3.9 Hz, 1H), 3.73 (dd, ²*J*_{*HH*} = 10.7, ³*J*_{*HH*} = 3.9 Hz, 1H), 2.50 (t, ⁴*J*_{*HH*} = 2.4 Hz, 1H). IR Neat: 1781 cm⁻¹ (C=O).

⁴ J. Sun, L. Han, W. Cheng, J. Wang, X. Zhang, S. Zhang, *ChemSusChem*, 2011, 4, 502.

⁵ Y. Patel, J. George, S. M. Pillai, P. Munshi, *Green Chem.*, 2009, **11**, 1056.

⁶ K. Matsumoto, Y. Sato, M. Shimojo, M. Hatanaka, *Tetraehedron: Asymmetry.*, 2000, **11**, 1965.

⁷ C. J. Whiteoak, N. Kielland, V. Laserna, E. C. Escudero-Adán, E. Martin, A. W. Kleij, *J. Am. Chem. Soc.*, 2013, **135**, 1228.

[10j]: 8,8a-dihydro-3aH-indeno[1,2-d][1,3]dioxol-2-one⁸

¹H NMR (300 MHz, CDCl₃): δ 7.32 – 7.53 (m, 4H), 6.01 (d, ³*J*_{*HH*} = 6.8 Hz, 1H), 5.44 – 5.47 (m, 1H), 3.40 (m, 1H). IR Neat: 1773 cm⁻¹ (C=O).

[10k]: 4-(morpholinomethyl)-1,3-dioxolan-2-one⁷

¹H NMR (300 MHz, CDCl₃): $\delta \delta 4.88 - 4.78$ (m, 1H), 4.54 (dd, ² $J_{HH} = 8.5$, ³ $J_{HH} = 8.5$ Hz, 1H), 4.25 (dd, ² $J_{HH} = 8.7$, ³ $J_{HH} = 7.2$ Hz, 1H), 3.71 (t, ³ $J_{HH} = 4.6$ Hz, 1H), 2.71 (d, ² $J_{HH} = 1.2$ Hz, 1H), 2.69 (d, ² $J_{HH} = 0.9$ Hz, 1H), 2.61 - 2.54 (m, 4H). IR Neat: 1784 cm⁻¹ (C=O).

[101]: 1,4-di(oxiran-2-yl)butane: ⁷

¹H NMR (300 MHz, CDCl₃): δ 4.78 – 4.67 (m, 2H), 4.55 (dd, ²*J*_{*HH*} = 8.5, ³*J*_{*HH*} = 8.5 Hz, 2H), 4.08 (dd,

 ${}^{2}J_{HH} = 8.9$, ${}^{3}J_{HH} = 7.2$ Hz, 2H), 1.90 – 1.40 (m, 4H). IR Neat: 1775 cm⁻¹ (C=O).

⁸ J.-L. Wang, J.-Q. Wang, L.-N. He, X.-Y. Dou, F. Wu, *Green Chem.*, 2008, **10**, 1218.

Figure 16. ¹H NMR spectrum of 4-butyl-1,3-dioxolan-2-one [10a] in CDCl₃ (300 MHz) at RT.

Figure 17. IR spectrum of 4-butyl-1,3-dioxolan-2-one [10a].

Figure 18. ¹H NMR spectrum of 4-(but-3-en-1-yl)-1,3-dioxolan-2-one [**10b**] in CDCl₃ (300 MHz) at RT.

Figure 19. IR spectrum of 4-(but-3-en-1-yl)-1,3-dioxolan-2-one [10b].

Figure 20. ¹H NMR spectrum of 4-phenyl-1,3-dioxolan-2-one [10c] in CDCl₃ (300 MHz) at RT.

Figure 21. IR spectrum of of 4-phenyl-1,3-dioxolan-2-one [10c].

Figure 22. ¹H NMR spectrum of 4-chloromethyl-1,3-dioxolan-2-one [10d] in CDCl₃ (300 MHz) at RT.

Figure 23. IR spectrum of 4-chloromethyl-1,3-dioxolan-2-one [10d].

Figure 24. ¹H NMR spectrum of 4-butoxymethyl-1,3-dioxolan-2-one [10e] in CDCl₃ (300 MHz) at RT.

Figure 25. IR spectrum of 4-butoxymethyl-1,3-dioxolan-2-one [10e].

Figure 26. ¹H NMR spectrum of 4-(hydroxymethyl)-1,3-dioxolan-2-one **[10g]** in DMSO (300 MHz) at RT.

Figure 27. IR spectrum of 4-(hydroxymethyl)-1,3-dioxolan-2-one [10g].

Figure 28. ¹H NMR spectrum of 4-((prop-2-yn-1-yloxy)methyl)-1,3-dioxolan-2-one **[10i]** in CDCl₃ (300 MHz) at RT.

Figure 29. IR spectrum of 4-((prop-2-yn-1-yloxy)methyl)-1,3-dioxolan-2-one [10i].

Figure 30. ¹H NMR spectrum of 8,8a-dihydro-3aH-indeno[1,2-d][1,3]dioxol-2-one **[10j]** in CDCl₃ (300 MHz) at RT.

Figure 31. IR spectrum of 8,8a-dihydro-3aH-indeno[1,2-d][1,3]dioxol-2-one [10j].

Figure 32. ¹H NMR spectrum of 4-(morpholinomethyl)-1,3-dioxolan-2-one [10k] in CDCl₃ (300 MHz)

at RT.

Figure 33. IR spectrum of 4-(morpholinomethyl)-1,3-dioxolan-2-one [10k].

Figure 34. ¹H NMR spectrum of 1,4-di(oxiran-2-yl)butane [10l] in CDCl₃ (300 MHz) at RT.

Figure 35. IR spectrum of 1,4-di(oxiran-2-yl)butane [101].

ADDITIONAL IR, ¹H AND ¹³C NMR SPECTRA OF PRODUCTS FROM FIGURE 4:

Figure 36. ¹H NMR spectrum of 4-*tert* butoxymethyl-1,3-dioxolan-2-one **[10f]** in CDCl₃ (500 MHz) at RT.

Figure 37. ¹³C NMR spectrum of 4-*tert* butoxymethyl-1,3-dioxolan-2-one **[10f]** in CDCl₃ (126 MHz) at RT.

Figure 39. Mass spectrum (HR-MS) of 4-tertbutoxymethyl-1,3-dioxolan-2-one [10f].

FURTHER X-RAY CRYSTALLOGRAPHIC IMAGES OF COMPLEXES 4 AND 6:

Figure 40. Part of the coordination polymer formed by complex **4** in the solid state through Zn-N(pyr) coordinative patterns. Color codes: Zn = green, O = red, N = blue.

Figure 41. Part of the packing diagram for complex **6**. Color codes: Zn = green, O = red, N = blue, I = yellow.

¹H NMR COMPARISON BETWEEN Zn(SALPYR) 1 AND ITS N-METHYLATED FORM 6:

Figure 42: Aromatic region of the ¹H NMR spectrum displayed for both 1 and 6 (acetone- d_6):

