Nickel-catalyzed oxidative coupling of alkynes and aryl boronic acids using metal-organic

framework Ni₂(BDC)₂(DABCO) as an efficient heterogeneous catalyst

Thanh Truong, Chung K. Nguyen, Thi V. Tran, Tung T. Nguyen, Nam T. S. Phan*

Department of Chemical Engineering, HCMC University of Technology, VNU-HCM,

268 Ly Thuong Kiet, District 10, Ho Chi Minh City, Viet Nam

*Email: <u>ptsnam@hcmut.edu.vn</u>

Ph: (+84 8) 38647256 ext. 5681

Fx: (+84 8) 38637504

Supporting information

Fig. S1. X-ray powder diffractograms of the as-synthesized (a), CH_3OH -exchanged (b), and activated (c) $Ni_2(BDC)_2(DABCO)$.

Fig. S2. SEM micrograph of the $Ni_2(BDC)_2(DABCO)$.

100 nm

Fig. S3. TEM micrograph of the $Ni_2(BDC)_2(DABCO)$.

Fig. S4. Pore size distribution of the $Ni_2(BDC)_2(DABCO)$.

Fig. S5. Nitrogen adsorption/desorption isotherm of the Ni₂(BDC)₂(DABCO). Adsorption data are shown as closed circles and desorption data as open circles.

Fig. S6. TGA analysis of the Ni₂(BDC)₂(DABCO).

Fig. S7. FT-IR spectra of the Ni₂(BDC)₂(DABCO) (a), 1,4-benzenedicarboxylic acid (b), and 1,4-diazabicyclo[2.2.2]octane (c).

Fig. S8. Effect of different phenylboronic acids on reaction conversions.

Fig. S9. Effect of different alkynes on reaction conversions.